
Christopher N Shingledecker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4871623/publications.pdf Version: 2024-02-01

Christopher N

#	Article	IF	CITATIONS
1	Detection of the aromatic molecule benzonitrile (<i>c</i> -C ₆ H ₅ CN) in the interstellar medium. Science, 2018, 359, 202-205.	12.6	370
2	Detection of two interstellar polycyclic aromatic hydrocarbons via spectral matched filtering. Science, 2021, 371, 1265-1269.	12.6	236
3	A study of interstellar aldehydes and enols as tracers of a cosmic ray-driven nonequilibrium synthesis of complex organic molecules. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7727-7732.	7.1	99
4	Interstellar detection of the highly polar five-membered ring cyanocyclopentadiene. Nature Astronomy, 2021, 5, 176-180.	10.1	96
5	Discovery of the Pure Polycyclic Aromatic Hydrocarbon Indene (c-C9H8) with GOTHAM Observations of TMC-1. Astrophysical Journal Letters, 2021, 913, L18.	8.3	96
6	On Cosmic-Ray-driven Grain Chemistry in Cold Core Models. Astrophysical Journal, 2018, 861, 20.	4.5	76
7	ALMA Detection of Interstellar Methoxymethanol (CH ₃ OCH ₂ OH). Astrophysical Journal Letters, 2017, 851, L46.	8.3	66
8	Early Science from GOTHAM: Project Overview, Methods, and the Detection of Interstellar Propargyl Cyanide (HCCCH ₂ CN) in TMC-1. Astrophysical Journal Letters, 2020, 900, L10.	8.3	60
9	A Combined Experimental and Theoretical Study on the Formation of Interstellar Propylene Oxide (CH ₃ CHCH ₂ O)—A Chiral Molecule. Astrophysical Journal, 2018, 860, 108.	4.5	54
10	A general method for the inclusion of radiation chemistry in astrochemical models. Physical Chemistry Chemical Physics, 2018, 20, 5359-5367.	2.8	51
11	INVESTIGATING THE MINIMUM ENERGY PRINCIPLE IN SEARCHES FOR NEW MOLECULAR SPECIES—THE CASE OF H ₂ C ₃ O ISOMERS. Astrophysical Journal, 2015, 799, 34.	4.5	49
12	An investigation of spectral line stacking techniques and application to the detection of HC11N. Nature Astronomy, 2021, 5, 188-196.	10.1	49
13	Ubiquitous aromatic carbon chemistry at the earliest stages of star formation. Nature Astronomy, 2021, 5, 181-187.	10.1	49
14	Efficient Production of S ₈ in Interstellar Ices: The Effects of Cosmic-Ray-driven Radiation Chemistry and Nondiffusive Bulk Reactions. Astrophysical Journal, 2020, 888, 52.	4.5	45
15	Low-temperature gas-phase formation of indene in the interstellar medium. Science Advances, 2021, 7, .	10.3	42
16	Non-detection of HC ₁₁ N towards TMC-1: constraining the chemistry of large carbon-chain molecules. Monthly Notices of the Royal Astronomical Society, 2016, 463, 4175-4183.	4.4	38
17	Detection of Interstellar HC ₅ O in TMC-1 with the Green Bank Telescope. Astrophysical Journal Letters, 2017, 843, L28.	8.3	36
18	The Case of H ₂ C ₃ O Isomers, Revisited: Solving the Mystery of the Missing Propadienone. Astrophysical Journal, 2019, 878, 80.	4.5	32

Christopher N

#	Article	IF	CITATIONS
19	Detection of Interstellar HC ₄ NC and an Investigation of Isocyanopolyyne Chemistry under TMC-1 Conditions. Astrophysical Journal Letters, 2020, 900, L9.	8.3	32
20	On Simulating the Proton-irradiation of O ₂ and H ₂ O Ices Using Astrochemical-type Models, with Implications for Bulk Reactivity. Astrophysical Journal, 2019, 876, 140.	4.5	30
21	First Results of an ALMA Band 10 Spectral Line Survey of NGC 6334I: Detections of Glycolaldehyde (HC(O)CH ₂ OH) and a New Compact Bipolar Outflow in HDO and CS. Astrophysical Journal Letters, 2018, 863, L35.	8.3	29
22	CSO AND CARMA OBSERVATIONS OF L1157. I. A DEEP SEARCH FOR HYDROXYLAMINE (NH ₂ OH). Astrophysical Journal, 2015, 812, 76.	4.5	28
23	A new model of the chemistry of ionizing radiation in solids: CIRIS. Physical Chemistry Chemical Physics, 2017, 19, 11043-11056.	2.8	26
24	Isomers in Interstellar Environments. I. The Case of Z- and E-cyanomethanimine. Astrophysical Journal, 2020, 897, 158.	4.5	25
25	Modeling C-shock Chemistry in Isolated Molecular Outflows. Astrophysical Journal, 2019, 881, 32.	4.5	24
26	CSO AND CARMA OBSERVATIONS OF L1157. II. CHEMICAL COMPLEXITY IN THE SHOCKED OUTFLOW. Astrophysical Journal, 2016, 827, 21.	4.5	20
27	Detection of interstellar H ₂ CCCHC ₃ N. Astronomy and Astrophysics, 2021, 652, L12.	5.1	18
28	The role of radiolysis in the modelling of C2H4O2 isomers and dimethyl ether in cold dark clouds. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3414-3424.	4.4	17
29	ON THE INFERENCE OF THE COSMIC-RAY IONIZATION RATE ζ FROM THE HCO ⁺ -to-DCO ⁺ ABUNDANCE RATIO: THE EFFECT OF NUCLEAR SPIN. Astrophysical Journal, 2016, 830, 151.	4.5	15
30	Searches for Interstellar HCCSH and H ₂ CCS. Astrophysical Journal, 2019, 883, 201.	4.5	13
31	Discovery of Interstellar trans-cyanovinylacetylene (HC ≡ CCH = CHC ≡ N) and vinylcyanoacetylene (H ₂ C = CHC ₃ N) in GOTHAM Observations of TMC-1. Astrophysical Journal Letters, 2021, 908, L11.	8.3	13
32	Cyclopropenone (c-C ₃ H ₂ O) as a Tracer of the Nonequilibrium Chemistry Mediated by Galactic Cosmic Rays in Interstellar Ices. Astrophysical Journal, 2021, 911, 24.	4.5	13
33	Cosmic-Ray Tracks in Astrophysical Ices: Modeling with the Geant4-DNA Monte Carlo Toolkit. Astrophysical Journal, 2020, 904, 189.	4.5	7
34	A New Method for Simulating Photoprocesses in Astrochemical Models. Astrophysical Journal, 2021, 910, 72.	4.5	5
35	Dense Molecular Clouds in the Crab Supernova Remnant. Astrophysical Journal, 2022, 925, 59.	4.5	3
36	A Search for Light Hydrides in the Envelopes of Evolved Stars. Astrophysical Journal, 2020, 901, 22.	4.5	2

Christopher N

#	Article	IF	CITATIONS
37	Radiation chemistry in astrochemical models: From the laboratory to the ISM. Proceedings of the International Astronomical Union, 2019, 15, 454-455.	0.0	0
38	A RIGOROUS K/KA-BAND HUNT FOR AROMATIC MOLECULES (ARKHAM): UBIQUITOUS AROMATIC CARBON CHEMISTRY AT THE EARLIEST STAGES OF STAR FORMATION. , 2021, , .		0
39	INDIVIDUAL DETECTIONS OF POLYCYCLIC AROMATIC HYDROCARBONS IN TMC-1., 2021, , .		0
40	SPECTRAL STACKING AND MATCHED FILTERING AS A RIGOROUS DETECTION TECHNIQUE FOR INTERSTELLAR MOLECULES. , 2021, , .		0
41	A SEARCH FOR LIGHT HYDRIDES IN THE ENVELOPES OF EVOLVED STARS. , 2021, , .		0
42	CARMA OBSERVATIONS OF L1157: CHEMICAL COMPLEXITY IN THE SHOCKED OUTFLOW. , 2016, , .		0
43	TIME-SENSITIVE CHEMICAL TRACERS WITHIN SHOCKED ASTROPHYSICAL SOURCES. , 2017, , .		0
44	A NEW MODEL OF THE CHEMISTRY OF IONIZING RADIATION IN SOLIDS. , 2017, , .		0
45	A SEARCH FOR LIGHT HYDRIDES IN THE ENVELOPES OF EVOLVED STARS. , 2020, , .		0
46	EARLY RESULTS FROM A RIGOROUS K/KA-BAND HUNT FOR AROMATIC MOLECULES (ARKHAM): UBIQUITOUS		0

⁴⁶ AROMATIC CARBON CHEMISTRY AT THE EARLIEST STAGES OF STAR FORMATION. , 2020, , .