Arturo Zychlinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/487162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Basic science under threat: Lessons from the Skirball Institute. Cell, 2022, 185, 755-758.	13.5	Ο
2	Neutrophil phenotypes and functions in cancer: A consensus statement. Journal of Experimental Medicine, 2022, 219, .	4.2	119
3	The cytosolic DNA sensor cGAS recognizes neutrophil extracellular traps. Science Signaling, 2021, 14, .	1.6	87
4	The Neutrophil. Immunity, 2021, 54, 1377-1391.	6.6	222
5	Entering the neutrophil trap. Nature Reviews Immunology, 2021, 21, 615-615.	10.6	3
6	Linker histone H1.2 and H1.4 affect the neutrophil lineage determination. ELife, 2020, 9, .	2.8	12
7	Neutrophil extracellular traps drive inflammatory pathogenesis in malaria. Science Immunology, 2019, 4, .	5.6	108
8	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
9	<i>Dnase1</i> â€deficient mice spontaneously develop a systemic lupus erythematosusâ€like disease. European Journal of Immunology, 2019, 49, 590-599.	1.6	27
10	Copper Regulates the Canonical NLRP3 Inflammasome. Journal of Immunology, 2018, 200, 1607-1617.	0.4	40
11	The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species. Journal of Biological Chemistry, 2018, 293, 4893-4900.	1.6	18
12	Neutrophil Extracellular Traps: The Biology of Chromatin Externalization. Developmental Cell, 2018, 44, 542-553.	3.1	250
13	Neutrophils: New insights and open questions. Science Immunology, 2018, 3, .	5.6	348
14	The role of neutrophil extracellular traps in rheumatic diseases. Nature Reviews Rheumatology, 2018, 14, 467-475.	3.5	175
15	Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Science Immunology, 2018, 3, .	5.6	486
16	Tetrahydroisoquinolines: New Inhibitors of Neutrophil Extracellular Trap (NET) Formation. ChemBioChem, 2017, 18, 888-893.	1.3	30
17	Cell-Cycle Proteins Control Production of Neutrophil Extracellular Traps. Developmental Cell, 2017, 43, 449-462.e5.	3.1	159
18	Diverse stimuli engage different neutrophil extracellular trap pathways. ELife, 2017, 6, .	2.8	598

ARTURO ZYCHLINSKY

#	Article	IF	CITATIONS
19	Immunodetection of NETs in Paraffin-Embedded Tissue. Frontiers in Immunology, 2016, 7, 513.	2.2	56
20	Neutrophil Extracellular Trap Formation Is Independent of De Novo Gene Expression. PLoS ONE, 2016, 11, e0157454.	1.1	56
21	Neutrophil oxidative burst activates ATM to regulate cytokine production and apoptosis. Blood, 2015, 126, 2842-2851.	0.6	58
22	Interleukin-1 Antagonist Anakinra in Amyotrophic Lateral Sclerosis—A Pilot Study. PLoS ONE, 2015, 10, e0139684.	1.1	53
23	Heparan Sulfate Modulates Neutrophil and Endothelial Function in Antibacterial Innate Immunity. Infection and Immunity, 2015, 83, 3648-3656.	1.0	30
24	A Myeloperoxidase-Containing Complex Regulates Neutrophil Elastase Release and Actin Dynamics during NETosis. Cell Reports, 2014, 8, 883-896.	2.9	556
25	The Balancing Act of Neutrophils. Cell Host and Microbe, 2014, 15, 526-536.	5.1	187
26	IcsA Is a Shigella flexneri Adhesin Regulated by the Type III Secretion System and Required for Pathogenesis. Cell Host and Microbe, 2014, 15, 435-445.	5.1	88
27	O-Antigen Protects Gram-Negative Bacteria from Histone Killing. PLoS ONE, 2013, 8, e71097.	1.1	14
28	Neutrophil extracellular traps: Is immunity the second function of chromatin?. Journal of Cell Biology, 2012, 198, 773-783.	2.3	878
29	Neutrophil Function: From Mechanisms to Disease. Annual Review of Immunology, 2012, 30, 459-489.	9.5	1,337
30	Automatic quantification of in vitro NET formation. Frontiers in Immunology, 2012, 3, 413.	2.2	176
31	Neutrophil Elastase Enhances Sputum Solubilization in Cystic Fibrosis Patients Receiving DNase Therapy. PLoS ONE, 2011, 6, e28526.	1.1	199
32	Glutamate utilization promotes meningococcal survival <i>in vivo</i> through avoidance of the neutrophil oxidative burst. Molecular Microbiology, 2011, 81, 1330-1342.	1.2	24
33	Activation of the Raf-MEK-ERK pathway is required for neutrophil extracellular trap formation. Nature Chemical Biology, 2011, 7, 75-77.	3.9	649
34	Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood, 2011, 117, 953-959.	0.6	612
35	Neutrophil antimicrobial proteins enhance Shigella flexneri adhesion and invasion. Cellular Microbiology, 2010, 12, 1134-1143.	1.1	27
36	Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9813-9818.	3.3	1,201

ARTURO ZYCHLINSKY

#	Article	IF	CITATIONS
37	Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. Journal of Cell Biology, 2010, 191, 677-691.	2.3	1,637
38	Neutrophil Extracellular Traps Contain Calprotectin, a Cytosolic Protein Complex Involved in Host Defense against Candida albicans. PLoS Pathogens, 2009, 5, e1000639.	2.1	1,378
39	NETs: a new strategy for using old weapons. Trends in Immunology, 2009, 30, 513-521.	2.9	620
40	Fungal and Bacterial Killing by Neutrophils. Methods in Molecular Biology, 2009, 470, 293-312.	0.4	61
41	Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood, 2009, 114, 2619-2622.	0.6	500
42	Response: Protecting against Aspergillus infection in CGD. Blood, 2009, 114, 3498-3498.	0.6	2
43	Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nature Immunology, 2008, 9, 866-872.	7.0	273
44	Single Residue Determines the Specificity of Neutrophil Elastase for Shigella Virulence Factors. Journal of Molecular Biology, 2008, 377, 1053-1066.	2.0	26
45	The Capsule Sensitizes <i>Streptococcus pneumoniae</i> to α-Defensins Human Neutrophil Proteins 1 to 3. Infection and Immunity, 2008, 76, 3710-3716.	1.0	38
46	What is the role of Toll-like receptors in bacterial infections?. Seminars in Immunology, 2007, 19, 41-47.	2.7	64
47	Novel cell death program leads to neutrophil extracellular traps. Journal of Cell Biology, 2007, 176, 231-241.	2.3	2,693
48	Beneficial suicide: why neutrophils die to make NETs. Nature Reviews Microbiology, 2007, 5, 577-582.	13.6	798
49	Capsule and d-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cellular Microbiology, 2007, 9, 1162-1171.	1.1	280
50	Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cellular Microbiology, 2006, 8, 668-676.	1.1	865
51	How do microbes evade neutrophil killing?. Cellular Microbiology, 2006, 8, 1687-1696.	1.1	171
52	An Endonuclease Allows Streptococcus pneumoniae to Escape from Neutrophil Extracellular Traps. Current Biology, 2006, 16, 401-407.	1.8	502
53	ShiA Abrogates the Innate T-Cell Response to Shigella flexneri Infection. Infection and Immunity, 2006, 74, 2317-2327.	1.0	26
54	Caspase-1-Mediated Activation of Interleukin-1β (IL-1β) and IL-18 Contributes to Innate Immune Defenses against Salmonella enterica Serovar Typhimurium Infection. Infection and Immunity, 2006, 74, 4922-4926.	1.0	236

ARTURO ZYCHLINSKY

#	Article	IF	CITATIONS
55	Human Neutrophils Kill Bacillus anthracis. PLoS Pathogens, 2005, 1, e23.	2.1	73
56	Toll-Like Receptors Are Temporally Involved in Host Defense. Journal of Immunology, 2004, 172, 4463-4469.	0.4	202
57	How do neutrophils and pathogens interact?. Current Opinion in Microbiology, 2004, 7, 62-66.	2.3	113
58	Neutrophil Extracellular Traps Kill Bacteria. Science, 2004, 303, 1532-1535.	6.0	7,806
59	Introduction: Forum in immunology on neutrophils. Microbes and Infection, 2003, 5, 1289-1291.	1.0	20
60	The ShiA protein encoded by theShigella flexneriSHI-2 pathogenicity island attenuates inflammation. Cellular Microbiology, 2003, 5, 797-807.	1.1	37
61	Neutrophil elastase targets virulence factors of enterobacteria. Nature, 2002, 417, 91-94.	13.7	282
62	Structure-Function Analysis of the Shigella Virulence Factor IpaB. Journal of Bacteriology, 2001, 183, 1269-1276.	1.0	50
63	Release of Toll-Like Receptor-2-Activating Bacterial Lipoproteins in Shigella flexneri Culture Supernatants. Infection and Immunity, 2001, 69, 6248-6255.	1.0	43
64	The regulatory protein PhoP controls susceptibility to the host inflammatory response in Shigella flexneri. Cellular Microbiology, 2000, 2, 443-452.	1.1	87
65	Caspase-1 Activation of IL-1β and IL-18 Are Essential for Shigella flexneri–Induced Inflammation. Immunity, 2000, 12, 581-590.	6.6	366
66	The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Molecular Microbiology, 1999, 33, 74-83.	1.2	127
67	Shigella-induced Apoptosis Is Dependent on Caspase-1 Which Binds to IpaB. Journal of Biological Chemistry, 1998, 273, 32895-32900.	1.6	363
68	IpaB mediates macrophage apoptosis induced by Shigella flexneri. Molecular Microbiology, 1994, 11, 619-627.	1.2	251
69	Molecular and Cellular Mechanisms of Tissue Invasion by Shigella flexneri. Annals of the New York Academy of Sciences, 1994, 730, 197-208.	1.8	44
70	Antimicrobial Mechanisms of Neutrophils. , 0, , 17-29.		0
71	Apoptosis and Enteric Bacterial Infections. , 0, , 367-383.		1