List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4871334/publications.pdf Version: 2024-02-01

HOMAS KÂULIALC

#	Article	IF	CITATIONS
1	Structure and function of the soil microbiome underlying N2O emissions from global wetlands. Nature Communications, 2022, 13, 1430.	12.8	72
2	Global macroecology of nitrogenâ€fixing plants. Global Ecology and Biogeography, 2021, 30, 514-526.	5.8	16
3	Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist, 2021, 231, 763-776.	7.3	126
4	The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity, 2021, 111, 573-588.	12.3	42
5	Regional-Scale In-Depth Analysis of Soil Fungal Diversity Reveals Strong pH and Plant Species Effects in Northern Europe. Frontiers in Microbiology, 2020, 11, 1953.	3.5	126
6	The Taxon Hypothesis Paradigm—On the Unambiguous Detection and Communication of Taxa. Microorganisms, 2020, 8, 1910.	3.6	114
7	FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 2020, 105, 1-16.	12.3	387
8	The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 2019, 47, D259-D264.	14.5	2,072
9	Solving the taxonomic identity of Pseudotomentella tristis s.l. (Thelephorales, Basidiomycota) – a multi-gene phylogeny and taxonomic review, integrating ecological and geographical data. MycoKeys, 2019, 50, 1-77.	1.9	5
10	Reassessment of the generic limits for Hydnellum and Sarcodon (Thelephorales, Basidiomycota). MycoKeys, 2019, 54, 31-47.	1.9	11
11	Unlocking biodiversity data: Prioritization and filling the gaps in biodiversity observation data in Europe. Biological Conservation, 2018, 221, 78-85.	4.1	55
12	High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Diversity, 2018, 90, 135-159.	12.3	450
13	Real gaps in European bird monitoring: A reply to VoÅ™ÃÅ¡ek et al Biological Conservation, 2018, 225, 247-248.	4.1	0
14	Taxonomic annotation of public fungal ITS sequences from the built environment – a report from an April 10–11, 2017 workshop (Aberdeen, UK). MycoKeys, 2018, 28, 65-82.	1.9	33
15	Considerations and consequences of allowing DNA sequence data as types of fungal taxa. IMA Fungus, 2018, 9, 167-175.	3.8	45
16	Taxonomy based on science is necessary for global conservation. PLoS Biology, 2018, 16, e2005075.	5.6	149
17	Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands. Mycorrhiza, 2017, 27, 355-367.	2.8	21
18	The next generation fungal diversity researcher. Fungal Biology Reviews, 2017, 31, 124-130.	4.7	10

#	Article	IF	CITATIONS
19	Polyozellus multiplex(Thelephorales) is a species complex containing four new species. Mycologia, 2017, 109, 975-992.	1.9	6
20	Biogeography and Specificity of Ectomycorrhizal Fungi of Coccoloba uvifera. Ecological Studies, 2017, , 345-359.	1.2	11
21	Aphyllophoroid fungi in insular woodlands of eastern Ukraine. Biodiversity Data Journal, 2017, 5, e22426.	0.8	4
22	Arbuscular mycorrhizal fungi associating with roots of Alnus and Rubus in Europe and the Middle East. Fungal Ecology, 2016, 24, 27-34.	1.6	12
23	Molecular Techniques in Mycological Studies and Sequence Data Curating: Quality Control and Challenges. Fungal Biology, 2016, , 47-64.	0.6	2
24	Tomentella brunneoincrustata, the first described species of the Pisonieae-associated Neotropical Tomentella clade, and phylogenetic analysis of the genus in Mexico. Mycological Progress, 2016, 15, 1.	1.4	9
25	Sequence-based classification and identification of Fungi. Mycologia, 2016, 108, 1049-1068.	1.9	154
26	A Comprehensive, Automatically Updated Fungal ITS Sequence Dataset for Reference-Based Chimera Control in Environmental Sequencing Efforts. Microbes and Environments, 2015, 30, 145-150.	1.6	231
27	Temporal patterns of orchid mycorrhizal fungi in meadows and forests as revealed by 454 pyrosequencing. New Phytologist, 2015, 205, 1608-1618.	7.3	96
28	Standardizing metadata and taxonomic identification in metabarcoding studies. GigaScience, 2015, 4, 34.	6.4	35
29	Response to Comment on "Global diversity and geography of soil fungi― Science, 2015, 349, 936-936.	12.6	43
30	Global diversity and geography of soil fungi. Science, 2014, 346, 1256688.	12.6	2,513
31	Global biogeography of <i>Alnus</i> â€essociated <i>Frankia</i> actinobacteria. New Phytologist, 2014, 204, 979-988.	7.3	41
32	Improving ITS sequence data for identification of plant pathogenic fungi. Fungal Diversity, 2014, 67, 11-19.	12.3	123
33	Global biogeography of the ectomycorrhizal /sebacina lineage (<scp>F</scp> ungi,) Tj ETQq1 1 0.784314 rgBT /G 2014, 23, 4168-4183.	Dverlock 1 3.9	0 Tf 50 187 T 58
34	Stable isotope analysis, field observations and synthesis experiments suggest that Odontia is a non-mycorrhizal sister genus of Tomentella and Thelephora. Fungal Ecology, 2014, 11, 80-90.	1.6	21
35	Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau061-bau061.	3.0	272
36	Towards a unified paradigm for sequenceâ€based identification of fungi. Molecular Ecology, 2013, 22, 5271-5277.	3.9	2,997

#	Article	IF	CITATIONS
37	The distance decay of similarity in communities of ectomycorrhizal fungi in different ecosystems and scales. Journal of Ecology, 2013, 101, 1335-1344.	4.0	124
38	Ectomycorrhizal fungi of exotic pine plantations in relation to native host trees in Iran: evidence of host range expansion by local symbionts to distantly related host taxa. Mycorrhiza, 2013, 23, 11-19.	2.8	63
39	A new species of Lenzitopsis (Thelephorales, Basidiomycota) and its phylogenetic placement. Mycoscience, 2013, 54, 87-92.	0.8	11
40	Biogeography of ectomycorrhizal fungi associated with alders (<i><scp>A</scp>lnus</i> spp.) in relation to biotic and abiotic variables at the global scale. New Phytologist, 2013, 198, 1239-1249.	7.3	191
41	Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecology, 2013, 6, 256-268.	1.6	81
42	Fungal community analysis by highâ€ŧhroughput sequencing of amplified markers – a user's guide. New Phytologist, 2013, 199, 288-299.	7.3	747
43	Diversity and community composition of ectomycorrhizal fungi in a dry deciduous dipterocarp forest in Thailand. Biodiversity and Conservation, 2012, 21, 2287-2298.	2.6	53
44	Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest. New Phytologist, 2012, 195, 832-843.	7.3	119
45	Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran. New Phytologist, 2012, 193, 465-473.	7.3	256
46	Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Molecular Ecology, 2012, 21, 4160-4170.	3.9	365
47	Tidying Up International Nucleotide Sequence Databases: Ecological, Geographical and Sequence Quality Annotation of ITS Sequences of Mycorrhizal Fungi. PLoS ONE, 2011, 6, e24940.	2.5	51
48	Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forests of Continental Africa and Madagascar. Molecular Ecology, 2011, 20, 3071-3080.	3.9	108
49	Towards standardization of the description and publication of nextâ€generation sequencing datasets of fungal communities. New Phytologist, 2011, 191, 314-318.	7.3	85
50	A single European aspen (Populus tremula) tree individual may potentially harbour dozens of Cenococcum geophilum ITS genotypes and hundreds of species of ectomycorrhizal fungi. FEMS Microbiology Ecology, 2011, 75, 313-320.	2.7	115
51	A note on the incidence of reverse complementary fungal ITS sequences in the public sequence databases and a software tool for their detection and reorientation. Mycoscience, 2011, 52, 278-282.	0.8	7
52	The Amsterdam Declaration on Fungal Nomenclature. IMA Fungus, 2011, 2, 105-111.	3.8	320
53	The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytologist, 2010, 186, 281-285.	7.3	1,563
54	454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist, 2010, 188, 291-301.	7.3	484

#	Article	IF	CITATIONS
55	Rangewide analysis of fungal associations in the fully mycoheterotrophic <i>Corallorhiza striata</i> complex (Orchidaceae) reveals extreme specificity on ectomycorrhizal <i>Tomentella</i> (Thelephoraceae) across North America. American Journal of Botany, 2010, 97, 628-643.	1.7	63
56	PlutoF—a Web Based Workbench for Ecological and Taxonomic Research, with an Online Implementation for Fungal ITS Sequences. Evolutionary Bioinformatics, 2010, 6, EBO.S6271.	1.2	203
5 7	Mycorrhizal symbionts of <i>Pisonia grandis</i> and <i>P. sechellarum</i> in Seychelles: identification of mycorrhizal fungi and description of new <i>Tomentella</i> species. Mycologia, 2010, 102, 522-533.	1.9	38
58	Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter?. Mycorrhiza, 2009, 19, 403-416.	2.8	40
59	The phylogeny and taxonomy of genera Cystoderma and Cystodermella (Agaricales) based on nuclear ITS and LSU sequences. Mycological Progress, 2009, 8, 59-73.	1.4	28
60	<i>Tomentellopsis pulchella</i> sp. nov. from St. Vitale Pine Forest (Ravenna, Italy). Mycotaxon, 2009, 107, 53-60.	0.3	2
61	Fungal associates of Pyrola rotundifolia, a mixotrophic Ericaceae, from two Estonian boreal forests. Mycorrhiza, 2008, 19, 15-25.	2.8	43
62	Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxonâ€specific primers. New Phytologist, 2008, 180, 479-490.	7.3	362
63	Forest microsite effects on community composition of ectomycorrhizal fungi on seedlings of <i>Picea abies</i> and <i>Betula pendula</i> . Environmental Microbiology, 2008, 10, 1189-1201.	3.8	110
64	The ectomycorrhizae of Pseudotomentella humicola on Picea abies. Nova Hedwigia, 2007, 84, 429-440.	0.4	5
65	Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytologist, 2007, 175, 321-333.	7.3	162
66	Monitoring of Biological Diversity: a Common-Ground Approach. Conservation Biology, 2007, 21, 313-317.	4.7	38
67	A higher-level phylogenetic classification of the Fungi. Mycological Research, 2007, 111, 509-547.	2.5	1,994
68	Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia, 2007, 151, 206-217.	2.0	163
69	Studies in African thelephoroid fungi: 1. Tomentella capitata and Tomentella brunneocystidia, two new species from Benin (West Africa) with capitate cystidia. Mycological Progress, 2007, 6, 7-18.	1.4	16
70	Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycological Research, 2006, 110, 734-748.	2.5	137
71	Fruiting body-guided molecular identification of root-tip mantle mycelia provides strong indications of ectomycorrhizal associations in two species of Sistotrema (Basidiomycota). Mycological Research, 2006, 110, 1426-1432.	2.5	38
72	Taxonomic Reliability of DNA Sequences in Public Sequence Databases: A Fungal Perspective. PLoS ONE, 2006, 1, e59.	2.5	508

#	Article	IF	CITATIONS
73	UNITE: a database providing webâ€based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist, 2005, 166, 1063-1068.	7.3	912
74	High phylogenetic diversity among corticioid homobasidiomycetes. Mycological Research, 2004, 108, 983-1002.	2.5	250
75	Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytologist, 2003, 159, 153-165.	7.3	344
76	Divergent arbuscular mycorrhizal fungal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils. New Phytologist, 2003, 160, 581-593.	7.3	149
77	ITS rDNA sequence-based phylogenetic analysis of Tomentellopsis species from boreal and temperate forests, and the identification of pink-type ectomycorrhizas. Mycological Progress, 2002, 1, 81-92.	1.4	30
78	Phylogenetic relationships in <i>Hypomyces</i> and allied genera, with emphasis on species growing on wood-decaying homobasidiomycetes. Canadian Journal of Botany, 2000, 77, 1756-1768.	1.1	6
79	Five simple guidelines for establishing basic authenticity and reliability of newly generated fungal ITS sequences. MycoKeys, 0, 4, 37-63.	1.9	157
80	Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys, 0, 10, 1-43.	1.9	409
81	Genomics and metagenomics technologies to recover ribosomal DNA and single-copy genes from old fruit-body and ectomycorrhiza specimens. MycoKeys, 0, 13, 1-20.	1.9	21
82	Annotating public fungal ITS sequences from the built environment according to the MIxS-Built Environment standard – a report from a May 23-24, 2016 workshop (Gothenburg, Sweden). MycoKeys, 0, 16, 1-15.	1.9	16
83	The need for an integrated biodiversity policy support process – Building the European contribution to a global Biodiversity Observation Network (EU BON). Nature Conservation, 0, 6, 49-65.	0.0	54