
## Jacques Behmoaras

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870908/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cardiac glycosides cause cytotoxicity in human macrophages and ameliorate white adipose tissue homeostasis. British Journal of Pharmacology, 2022, 179, 1874-1886.                                 | 5.4  | 9         |
| 2  | Glomerulonephritis and autoimmune vasculitis are independent of <scp>P2RX7</scp> but may depend on alternative inflammasome pathways. Journal of Pathology, 2022, 257, 300-313.                    | 4.5  | 3         |
| 3  | The versatile biochemistry of iron in macrophage effector functions. FEBS Journal, 2021, 288, 6972-6989.                                                                                           | 4.7  | 12        |
| 4  | Type I interferons affect the metabolic fitness of CD8+ T cells from patients with systemic lupus erythematosus. Nature Communications, 2021, 12, 1980.                                            | 12.8 | 56        |
| 5  | Longitudinal proteomic profiling of dialysis patients with COVID-19 reveals markers of severity and predictors of death. ELife, 2021, 10, .                                                        | 6.0  | 58        |
| 6  | Sphingolipid metabolism during Tollâ€like receptor 4 (TLR4)â€mediated macrophage activation. British<br>Journal of Pharmacology, 2021, 178, 4575-4587.                                             | 5.4  | 33        |
| 7  | Similarities and interplay between senescent cells and macrophages. Journal of Cell Biology, 2021, 220,                                                                                            | 5.2  | 57        |
| 8  | Adipoclast: a multinucleated fat-eating macrophage. BMC Biology, 2021, 19, 246.                                                                                                                    | 3.8  | 15        |
| 9  | BCAT1 affects mitochondrial metabolism independently of leucine transamination in activated human macrophages. Journal of Cell Science, 2020, 133, .                                               | 2.0  | 24        |
| 10 | A trans-eQTL network regulates osteoclast multinucleation and bone mass. ELife, 2020, 9, .                                                                                                         | 6.0  | 24        |
| 11 | Acute Iron Deprivation Reprograms Human Macrophage Metabolism and Reduces Inflammation InÂVivo.<br>Cell Reports, 2019, 28, 498-511.e5.                                                             | 6.4  | 75        |
| 12 | Cardiac glycosides are broad-spectrum senolytics. Nature Metabolism, 2019, 1, 1074-1088.                                                                                                           | 11.9 | 207       |
| 13 | Response to: 'M-CSF and GM-CSF monocyte-derived macrophages in systemic sclerosis: the two sides of the same coin?' by Lescoat <i>et al</i> . Annals of the Rheumatic Diseases, 2019, 78, e20-e20. | 0.9  | 4         |
| 14 | Systems genetics identifies a macrophage cholesterol network associated with physiological wound healing. JCI Insight, 2019, 4, .                                                                  | 5.0  | 12        |
| 15 | Epoxygenase inactivation exacerbates diet and aging-associated metabolic dysfunction resulting from impaired adipogenesis. Molecular Metabolism, 2018, 11, 18-32.                                  | 6.5  | 14        |
| 16 | Changes in macrophage transcriptome associate with systemic sclerosis and mediate <i>GSDMA</i> contribution to disease risk. Annals of the Rheumatic Diseases, 2018, 77, 596-601.                  | 0.9  | 60        |
| 17 | Common signalling pathways in macrophage and osteoclast multinucleation. Journal of Cell Science, 2018, 131, .                                                                                     | 2.0  | 152       |
| 18 | A Bayesian Approach for Analysis of Whole-Genome Bisulfite Sequencing Data Identifies<br>Disease-Associated Changes in DNA Methylation. Genetics, 2017, 205, 1443-1458.                            | 2.9  | 14        |

JACQUES BEHMOARAS

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease. Methods in<br>Molecular Biology, 2017, 1488, 337-362.                                                | 0.9  | 11        |
| 20 | Identification of Ceruloplasmin as a Gene that Affects Susceptibility to Glomerulonephritis Through Macrophage Function. Genetics, 2017, 206, 1139-1151.                                  | 2.9  | 11        |
| 21 | BCAT1 controls metabolic reprogramming in activated human macrophages and is associated with inflammatory diseases. Nature Communications, 2017, 8, 16040.                                | 12.8 | 156       |
| 22 | Identification of a nutrient sensing transcriptional network in monocytes by using inbred rat models of cafeteria diet. DMM Disease Models and Mechanisms, 2016, 9, 1231-1239.            | 2.4  | 10        |
| 23 | Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nature Communications, 2015, 6, 6031.                                | 12.8 | 158       |
| 24 | Integrating Phosphoproteome and Transcriptome Reveals New Determinants of Macrophage<br>Multinucleation. Molecular and Cellular Proteomics, 2015, 14, 484-498.                            | 3.8  | 27        |
| 25 | Macrophage Epoxygenase Determines a Profibrotic Transcriptome Signature. Journal of Immunology, 2015, 194, 4705-4716.                                                                     | 0.8  | 28        |
| 26 | Kcnn4 Is a Regulator of Macrophage Multinucleation in Bone Homeostasis and Inflammatory Disease.<br>Cell Reports, 2014, 8, 1210-1224.                                                     | 6.4  | 53        |
| 27 | Unique Regulatory Properties of Mesangial Cells Are Genetically Determined in the Rat. PLoS ONE, 2014, 9, e111452.                                                                        | 2.5  | 4         |
| 28 | Combined ChIP-Seq and transcriptome analysis identifies AP-1/JunD as a primary regulator of oxidative stress and IL-11 <sup>2</sup> synthesis in macrophages. BMC Genomics, 2013, 14, 92. | 2.8  | 24        |
| 29 | P2X7 receptor-mediated Nlrp3-inflammasome activation is a genetic determinant of<br>macrophage-dependent crescentic glomerulonephritis. Journal of Leukocyte Biology, 2013, 93, 127-134.  | 3.3  | 50        |
| 30 | Experimental crescentic glomerulonephritis: a new bicongenic rat model. DMM Disease Models and Mechanisms, 2013, 6, 1477-86.                                                              | 2.4  | 12        |
| 31 | Role of Novel Rat-specific Fc Receptor in Macrophage Activation Associated with Crescentic<br>Glomerulonephritis. Journal of Biological Chemistry, 2012, 287, 5710-5719.                  | 3.4  | 11        |
| 32 | Genetic Susceptibility to Experimental Autoimmune Glomerulonephritis in the Wistar Kyoto Rat.<br>American Journal of Pathology, 2012, 180, 1843-1851.                                     | 3.8  | 13        |
| 33 | Genetic Loci Modulate Macrophage Activity and Glomerular Damage in Experimental<br>Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2010, 21, 1136-1144.          | 6.1  | 23        |
| 34 | Kallikreins: unravelling the genetics of autoimmune glomerulonephritis*. Nephrology Dialysis<br>Transplantation, 2009, 24, 2987-2989.                                                     | 0.7  | 0         |
| 35 | Jund is a determinant of macrophage activation and is associated with glomerulonephritis susceptibility. Nature Genetics, 2008, 40, 553-559.                                              | 21.4 | 86        |
| 36 | Immunolipidomics Reveals a Globoside Network During the Resolution of Pro-Inflammatory Response in Human Macrophages. Frontiers in Immunology, 0, 13, .                                   | 4.8  | 4         |