Orazio Giustolisi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870650/publications.pdf Version: 2024-02-01

Οραγίο Οιμετομεί

#	Article	IF	CITATIONS
1	Topological and hydraulic metrics-based search space reduction for optimal re-sizing of water distribution networks. Journal of Hydroinformatics, 2022, 24, 610-621.	2.4	6
2	A Novel Approach to Analyze the Isolation Valve System Based on the Complex Network Theory. Water Resources Research, 2022, 58, .	4.2	9
3	Reliability analysis of complex water distribution systems: the role of the network connectivity and tanks. Journal of Hydroinformatics, 2022, 24, 128-142.	2.4	7
4	Calibration of Design Models for Leakage Management of Water Distribution Networks. Water Resources Management, 2021, 35, 2537-2551.	3.9	22
5	Effects of Orifice Diameter and Retention Time of Local Tanks on the Reliability and Carbon Footprint of Water Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2021, 147, 05021023.	2.6	Ο
6	Digital Transformation Paradigm for Asset Management in Water Distribution Networks. , 2021, , .		5
7	Water Distribution Network Reliability Assessment and Isolation Valve System. Journal of Water Resources Planning and Management - ASCE, 2020, 146, 04019064.	2.6	33
8	Edge betweenness for water distribution networks domain analysis. Journal of Hydroinformatics, 2020, 22, 121-131.	2.4	13
9	Embedding the intrinsic relevance of vertices in network analysis: the case of centrality metrics. Scientific Reports, 2020, 10, 3297.	3.3	29
10	Integrated pressure control strategies for sustainable management of water distribution networks. E3S Web of Conferences, 2019, 85, 06005.	0.5	3
11	Tailoring Centrality Metrics for Water Distribution Networks. Water Resources Research, 2019, 55, 2348-2369.	4.2	47
12	Supporting Design of Combined Energy Recovery and Pressure Control in a Water Distribution System. , 2019, , .		0
13	Modelling an Urban Groundwater Well Field with WDNetXL/WDNetGIS. , 2019, , .		0
14	Advanced Hydraulic Analysis for Energy Assessment in a Real Water Distribution Network. , 2019, , .		0
15	Towards serious gaming for water distribution networks sizing: a teaching experiment. Journal of Hydroinformatics, 2019, 21, 207-222.	2.4	5
16	Modularity Index for Optimal Sensor Placement in WDNs. Springer Water, 2018, , 433-447.	0.3	1
17	Flexible investment planning for water distribution networks. Journal of Hydroinformatics, 2018, 20, 18-33.	2.4	4
18	Relevance of hydraulic modelling in planning and operating real-time pressure control: case of Oppegård municipality. Journal of Hydroinformatics, 2018, 20, 535-550.	2.4	14

#	Article	IF	CITATIONS
19	Estimating Leakages in Water Distribution Networks Based Only on Inlet Flow Data. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	2.6	19
20	Optimal Design of District Metering Areas for the Reduction of Leakages. Journal of Water Resources Planning and Management - ASCE, 2017, 143, .	2.6	55
21	Strategies for the electric regulation of pressure control valves. Journal of Hydroinformatics, 2017, 19, 621-639.	2.4	18
22	Network structure classification and features of water distribution systems. Water Resources Research, 2017, 53, 3407-3423.	4.2	41
23	Feasibility of Mass Balance Approach to Water Distribution Network Model Calibration. Procedia Engineering, 2017, 186, 551-558.	1.2	8
24	A Proposal of Optimal Sampling Design Using Infrastructure Modularity. Procedia Engineering, 2017, 186, 559-566.	1.2	0
25	Reducing background leakages and energy consumption in a real WDN by optimal DMA design. , 2017, , .		2
26	Optimal pump scheduling strategies accounting for background leakages and energy cost. , 2017, , .		0
27	Water Network Design Using a Multiobjective Real Options Framework. Journal of Optimization, 2017, 2017, 1-13.	6.0	6
28	Selection of relevant input variables in storm water quality modeling by multiobjective evolutionary polynomial regression paradigm. Water Resources Research, 2016, 52, 2403-2419.	4.2	20
29	Enhanced WDN Hydraulic Modelling and Detection of Burst Leakages. Procedia Engineering, 2016, 162, 3-14.	1.2	5
30	Optimal Design of District Metering Areas. Procedia Engineering, 2016, 162, 403-410.	1.2	8
31	A Methodology to Estimate Leakages in Water Distribution Networks Based on Inlet Flow Data Analysis. Procedia Engineering, 2016, 162, 411-418.	1.2	13
32	Special Issue on the Battle of Background Leakage Assessment for Water Networks. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	2.6	6
33	Detecting anomalies in water distribution networks using EPR modelling paradigm. Journal of Hydroinformatics, 2016, 18, 409-427.	2.4	47
34	Active Leakage Control with WDNetXL. Procedia Engineering, 2016, 154, 62-70.	1.2	9
35	Supporting Real-time Pressure Control in Oppegård Municipality with WDNetXL. Procedia Engineering, 2016, 154, 71-79.	1.2	8
36	A proposal of optimal sampling design using a modularity strategy. Water Resources Research, 2016, 52, 6171-6185.	4.2	26

#	Article	IF	CITATIONS
37	Operational and Tactical Management of Water and Energy Resources in Pressurized Systems: Competition at WDSA 2014. Journal of Water Resources Planning and Management - ASCE, 2016, 142, .	2.6	44
38	Leakage Management: Planning Remote Real Time Controlled Pressure Reduction in Oppegård Municipality. Procedia Engineering, 2015, 119, 72-81.	1.2	21
39	Leakage Management: WDNetXL Pressure Control Module. Procedia Engineering, 2015, 119, 82-90.	1.2	16
40	WDNetXL: Hydraulic and Topology Analysis Integration and Features. Procedia Engineering, 2015, 119, 669-679.	1.2	6
41	General metrics for segmenting infrastructure networks. Journal of Hydroinformatics, 2015, 17, 505-517.	2.4	16
42	Water Distribution System Modeling and Optimization: A Case Study. Procedia Engineering, 2015, 119, 719-724.	1.2	7
43	Hydraulic System Modelling: Background Leakage Model Calibration in Oppegård Municipality. Procedia Engineering, 2015, 119, 633-642.	1.2	8
44	Vulnerability Assessment of Water Distribution Networks under Seismic Actions. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	2.6	40
45	New Modularity-Based Approach to Segmentation of Water Distribution Networks. Journal of Hydraulic Engineering, 2014, 140, .	1.5	78
46	A Strategy for Real Options from Multi-objective Optimal Design. Procedia Engineering, 2014, 89, 831-838.	1.2	0
47	Dealing with Uncertainty through Real Options for the Multi-objective Design of Water Distribution Networks. Procedia Engineering, 2014, 89, 856-863.	1.2	7
48	Study on relationships between climate-related covariates and pipe bursts using evolutionary-based modelling. Journal of Hydroinformatics, 2014, 16, 743-757.	2.4	43
49	Modeling Local Water Storages Delivering Customer Demands in WDN Models. Journal of Hydraulic Engineering, 2014, 140, 89-104.	1.5	19
50	Testing linear solvers for global gradient algorithm. Journal of Hydroinformatics, 2014, 16, 1178-1193.	2.4	7
51	Supporting Decision on Energy vs. Asset Cost Optimization in Drinking Water Distribution Networks. Procedia Engineering, 2014, 70, 734-743.	1.2	9
52	Optimal Water Distribution Network Design Accounting for Valve Shutdowns. Journal of Water Resources Planning and Management - ASCE, 2014, 140, 277-287.	2.6	17
53	Accounting for Local Water Storages in Assessing WDN Supply Capacity. Procedia Engineering, 2014, 70, 142-151.	1.2	1
54	Energy Saving and Leakage Control in Water Distribution Networks: A Joint Research Project between Italy and China. Procedia Engineering, 2014, 70, 152-161.	1.2	4

#	Article	IF	CITATIONS
55	Seismic Reliability Assessment of Water Distribution Networks. Procedia Engineering, 2014, 70, 998-1007.	1.2	5
56	A novel infrastructure modularity index for the segmentation of water distribution networks. Water Resources Research, 2014, 50, 7648-7661.	4.2	43
57	Assessing mechanical vulnerability in water distribution networks under multiple failures. Water Resources Research, 2014, 50, 2586-2599.	4.2	40
58	Battle of Background Leakage Assessment for Water Networks (BBLAWN) at WDSA Conference 2014. Procedia Engineering, 2014, 89, 4-12.	1.2	27
59	Modularity Index for Hydraulic System Segmentation. Procedia Engineering, 2014, 89, 1152-1159.	1.2	3
60	WQNetXL: A MS-excel Water Quality System Tool for WDNs. Procedia Engineering, 2014, 89, 262-272.	1.2	2
61	Simulating floods in ephemeral streams in Southern Italy by full-2D hydraulic models. International Journal of River Basin Management, 2013, 11, 1-17.	2.7	13
62	Operational Optimization: Water Losses versus Energy Costs. Journal of Hydraulic Engineering, 2013, 139, 410-423.	1.5	48
63	Computationally Efficient Modeling Method for Large Water Network Analysis. Journal of Hydraulic Engineering, 2012, 138, 313-326.	1.5	32
64	Accounting for Directional Devices in WDN Modeling. Journal of Hydraulic Engineering, 2012, 138, 858-869.	1.5	12
65	Demand Components in Water Distribution Network Analysis. Journal of Water Resources Planning and Management - ASCE, 2012, 138, 356-367.	2.6	108
66	Assessing climate change and asset deterioration impacts on water distribution networks: Demand-driven or pressure-driven network modeling?. Environmental Modelling and Software, 2012, 37, 206-216.	4.5	31
67	The activation of ephemeral streams in karst catchments of semi-arid regions. Catena, 2012, 99, 54-65.	5.0	16
68	Generalizing WDN simulation models to variable tank levels. Journal of Hydroinformatics, 2012, 14, 562-573.	2.4	39
69	Battle of the Water Calibration Networks. Journal of Water Resources Planning and Management - ASCE, 2012, 138, 523-532.	2.6	134
70	Calibration of Water Distribution System Using Topological Analysis. , 2011, , .		4
71	Modelling mechanical behaviour of rubber concrete using evolutionary polynomial regression. Engineering Computations, 2011, 28, 492-507.	1.4	29
72	Water Distribution Network Pressure-Driven Analysis Using the Enhanced Global Gradient Algorithm (EGGA). Journal of Water Resources Planning and Management - ASCE, 2011, 137, 498-510.	2.6	35

#	Article	IF	CITATIONS
73	Advancements in Water Distribution Network Simulation by Enhanced GGA. , 2011, , .		2
74	Some explicit formulations of Colebrook–White friction factor considering accuracy vs. computational speed. Journal of Hydroinformatics, 2011, 13, 401-418.	2.4	34
75	A Tool for Preliminary WDN Topological Analysis. , 2011, , .		2
76	Scour depth modelling by a multi-objective evolutionary paradigm. Environmental Modelling and Software, 2011, 26, 498-509.	4.5	68
77	Analysis of Simplification Errors for Water Distribution Models. , 2011, , .		1
78	Water distribution network calibration using enhanced GGA and topological analysis. Journal of Hydroinformatics, 2011, 13, 621-641.	2.4	17
79	Evaluation of liquefaction potential based on CPT results using evolutionary polynomial regression. Computers and Geotechnics, 2010, 37, 82-92.	4.7	58
80	Accounting for uniformly distributed pipe demand in WDN analysis: enhanced GGA. Urban Water Journal, 2010, 7, 243-255.	2.1	21
81	Inferring groundwater system dynamics from hydrological time-series data. Hydrological Sciences Journal, 2010, 55, 593-608.	2.6	32
82	Prediction of weekly nitrate-N fluctuations in a small agricultural watershed in Illinois. Journal of Hydroinformatics, 2010, 12, 251-261.	2.4	30
83	Comparison of three data-driven techniques in modelling the evapotranspiration process. Journal of Hydroinformatics, 2010, 12, 365-379.	2.4	36
84	Considering Actual Pipe Connections in Water Distribution Network Analysis. Journal of Hydraulic Engineering, 2010, 136, 889-900.	1.5	35
85	Identification of segments and optimal isolation valve system design in water distribution networks. Urban Water Journal, 2010, 7, 1-15.	2.1	121
86	Scenarios of Contaminant Diffusion on a Medium Size Urban Water Distribution Network. , 2009, , .		0
87	Asset deterioration analysis using multi-utility data and multi-objective data mining. Journal of Hydroinformatics, 2009, 11, 211-224.	2.4	46
88	Enhanced WDN Analysis: Representation of Actual Pipe Connections. , 2009, , .		0
89	Optimal Design of Isolation Valve System for Water Distribution Networks. , 2009, , .		1
90	An effective multi-objective approach to prioritisation of sewer pipe inspection. Water Science and Technology, 2009, 60, 841-850.	2.5	28

#	Article	IF	CITATIONS
91	An integrated modelling approach for the assessment of land use change effects on wastewater infrastructures. Environmental Modelling and Software, 2009, 24, 1522-1528.	4.5	17
92	Advances in data-driven analyses and modelling using EPR-MOGA. Journal of Hydroinformatics, 2009, 11, 225-236.	2.4	176
93	Pipe hydraulic resistance correction in WDN analysis. Urban Water Journal, 2009, 6, 39-52.	2.1	55
94	New Concepts and Tools for Pipe Network Design. , 2009, , .		2
95	Deterministic versus Stochastic Design of Water Distribution Networks. Journal of Water Resources Planning and Management - ASCE, 2009, 135, 117-127.	2.6	87
96	Prioritizing Pipe Replacement: From Multiobjective Genetic Algorithms to Operational Decision Support. Journal of Water Resources Planning and Management - ASCE, 2009, 135, 484-492.	2.6	43
97	Enhanced Global Gradient Algorithm: A General Formulation. , 2009, , .		1
98	An Operative Approach to Water Distribution System Rehabilitation. , 2009, , .		0
99	Detecting Topological Changes in Large Water Distribution Networks. , 2009, , .		3
100	Optimal Pipe Replacement Accounting for Leakage Reduction and Isolation Valves. , 2009, , .		1
101	An investigation on stream temperature analysis based on evolutionary computing. Hydrological Processes, 2008, 22, 315-326.	2.6	24
102	Development of pipe deterioration models for water distribution systems using EPR. Journal of Hydroinformatics, 2008, 10, 113-126.	2.4	166
103	An evolutionary multiobjective strategy for the effective management of groundwater resources. Water Resources Research, 2008, 44, .	4.2	37
104	Algorithm for Automatic Detection of Topological Changes in Water Distribution Networks. Journal of Hydraulic Engineering, 2008, 134, 435-446.	1.5	82
105	An evolutionaryâ€based data mining technique for assessment of civil engineering systems. Engineering Computations, 2008, 25, 500-517.	1.4	57
106	Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 2008, 134, 626-635.	1.5	306
107	Extended Period Simulation Analysis Considering Valve Shutdowns. Journal of Water Resources Planning and Management - ASCE, 2008, 134, 527-537.	2.6	60
108	Determination of friction factor for corrugated drains. Water Management, 2008, 161, 31-42.	1.2	4

#	Article	IF	CITATIONS
109	A Simulation Model for Detecting Topological Changes in a Water Distribution Network. , 2007, , 1.		4
110	Ensemble modeling approach for rainfall/groundwater balancing. Journal of Hydroinformatics, 2007, 9, 95-106.	2.4	8
111	A multi-model approach to analysis of environmental phenomena. Environmental Modelling and Software, 2007, 22, 674-682.	4.5	105
112	Development of rehabilitation plans for water mains replacement considering risk and cost-benefit assessment. Civil Engineering and Environmental Systems, 2006, 23, 175-190.	0.9	71
113	Using a multi-objective genetic algorithm for SVM construction. Journal of Hydroinformatics, 2006, 8, 125-139.	2.4	13
114	A symbolic data-driven technique based on evolutionary polynomial regression. Journal of Hydroinformatics, 2006, 8, 207-222.	2.4	272
115	Modelling sewer failure by evolutionary computing. Water Management, 2006, 159, 111-118.	1.2	51
116	Optimal design of artificial neural networks by a multi-objective strategy: groundwater level predictions. Hydrological Sciences Journal, 2006, 51, 502-523.	2.6	61
117	Improving generalization of artificial neural networks in rainfall–runoff modelling / Amélioration de la généralisation de réseaux de neurones artificiels pour la modélisation pluie-débit. Hydrological Sciences Journal, 2005, 50, .	2.6	89
118	Report on Hydroinformatics 2004, Singapore. Journal of Hydroinformatics, 2005, 7, 1-2.	2.4	1
119	Using genetic programming to determine Chèzy resistance coefficient in corrugated channels. Journal of Hydroinformatics, 2004, 6, 157-173.	2.4	90
120	Sparse solution in training artificial neural networks. Neurocomputing, 2004, 56, 285-304.	5.9	13
121	Input–output dynamic neural networks simulating inflow–outflow phenomena in an urban hydrological basin. Journal of Hydroinformatics, 2000, 2, 269-279.	2.4	11
122	Analysis of the isolation valve system in water distribution networks using the segment graph. Water Resources Management, 0, , .	3.9	7