Teresa M Ribeiro-Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT	/Overlock 10 4.3	Tf 59742
2	Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovascular Research, 2017, 113, 1338-1350.	1.8	193
3	Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Scientific Reports, 2015, 5, 13243.	1.6	135
4	Role of connexin 43 in different forms of intercellular communication – gap junctions, extracellular vesicles and tunnelling nanotubes. Journal of Cell Science, 2017, 130, 3619-3630.	1.2	119
5	Biological Functions of Connexin43 Beyond Intercellular Communication. Trends in Cell Biology, 2019, 29, 835-847.	3.6	54
6	The Force at the Tip - Modelling Tension and Proliferation in Sprouting Angiogenesis. PLoS Computational Biology, 2015, 11, e1004436.	1.5	52
7	AMSHâ€mediated deubiquitination of Cx43 regulates internalization and degradation of gap junctions. FASEB Journal, 2014, 28, 4629-4641.	0.2	37
8	Heart ischemia results in connexin43 ubiquitination localized at the intercalated discs. Biochimie, 2015, 112, 196-201.	1.3	37
9	Microglial Extracellular Vesicles as Vehicles for Neurodegeneration Spreading. Biomolecules, 2021, 11, 770.	1.8	31
10	Alteration in Phospholipidome Profile of Myoblast H9c2 Cell Line in a Model of Myocardium Starvation and Ischemia. Journal of Cellular Physiology, 2016, 231, 2266-2274.	2.0	29
11	Ischaemia alters the effects of cardiomyocyteâ€derived extracellular vesicles on macrophage activation. Journal of Cellular and Molecular Medicine, 2019, 23, 1137-1151.	1.6	28
12	Exosomes derived from microglia exposed to elevated pressure amplify the neuroinflammatory response in retinal cells. Glia, 2020, 68, 2705-2724.	2.5	26
13	Myocardial infarction affects Cx43 content of extracellular vesicles secreted by cardiomyocytes. Life Science Alliance, 2020, 3, e202000821.	1.3	26
14	Autophagy and Ubiquitination in Cardiovascular Diseases. DNA and Cell Biology, 2015, 34, 243-251.	0.9	25
15	Simple and Fast SEC-Based Protocol to Isolate Human Plasma-Derived Extracellular Vesicles for Transcriptional Research. Molecular Therapy - Methods and Clinical Development, 2020, 18, 723-737.	1.8	24
16	Proteostasis and SUMO in the heart. International Journal of Biochemistry and Cell Biology, 2016, 79, 443-450.	1.2	17
17	Exosomes and STUB1/CHIP cooperate to maintain intracellular proteostasis. PLoS ONE, 2019, 14, e0223790.	1.1	14
18	Characterization of phospholipid nitroxidation by LC-MS in biomimetic models and in H9c2 Myoblast using a lipidomic approach. Free Radical Biology and Medicine, 2017, 106, 219-227.	1.3	12

#	Article	IF	CITATIONS
19	Caveolin-1 Modulation Increases Efficacy of a Galacto-Conjugated Phthalocyanine in Bladder Cancer Cells Resistant to Photodynamic Therapy. Molecular Pharmaceutics, 2020, 17, 2145-2154.	2.3	12
20	The Role of Proteostasis in the Regulation of Cardiac Intercellular Communication. Advances in Experimental Medicine and Biology, 2020, 1233, 279-302.	0.8	10
21	Connexin 43 ubiquitination determines the fate of gap junctions: restrict to survive. Biochemical Society Transactions, 2015, 43, 471-475.	1.6	9
22	Ischaemia impacts TNT-mediated communication between cardiac cells. Current Research in Cell Biology, 2020, 1, 100001.	2.4	8
23	Intravascular imaging, histopathological analysis, and catecholamine quantification following catheter-based renal denervation in a swine model: the impact of prebifurcation energy delivery. Hypertension Research, 2018, 41, 708-717.	1.5	5
24	A Conserved LIR Motif in Connexins Mediates Ubiquitin-Independent Binding to LC3/GABARAP Proteins. Cells, 2020, 9, 902.	1.8	4
25	Understanding the Dynamics of Tumor Angiogenesis: A Systems Biology Approach. , 2012, , 197-227.		2
26	Targeted Approach for Proteomic Analysis of a Hidden Membrane Protein. Methods in Molecular Biology, 2017, 1619, 151-172.	0.4	1
27	Ubiquitin induces interference in communication: ubiquitination of cx43 leads to gap junction degradation in ischemic heart. European Heart Journal, 2013, 34, 1604-1604.	1.0	0
28	To beat or not to beat: detrimental autophagy contributes to gap junctions degradation in ischemic heart. European Heart Journal, 2013, 34, 775-775.	1.0	0