## Stephen D Wratten

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4870206/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Habitat Management to Conserve Natural Enemies of Arthropod Pests in Agriculture. Annual Review of Entomology, 2000, 45, 175-201.                                                                         | 11.8 | 2,309     |
| 2  | A global synthesis reveals biodiversity-mediated benefits for crop production. Science Advances, 2019, 5, eaax0121.                                                                                       | 10.3 | 524       |
| 3  | Arthropod Pest Management in Organic Crops. Annual Review of Entomology, 2007, 52, 57-80.                                                                                                                 | 11.8 | 465       |
| 4  | Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 2018, 1, 441-446.                                                                               | 23.7 | 416       |
| 5  | Habitat Management to Suppress Pest Populations: Progress and Prospects. Annual Review of Entomology, 2017, 62, 91-109.                                                                                   | 11.8 | 415       |
| 6  | Crop pests and predators exhibit inconsistent responses to surrounding landscape composition.<br>Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7863-E7870. | 7.1  | 401       |
| 7  | Multi-function agricultural biodiversity: pest management and other benefits. Basic and Applied<br>Ecology, 2003, 4, 107-116.                                                                             | 2.7  | 383       |
| 8  | Pollinator habitat enhancement: Benefits to other ecosystem services. Agriculture, Ecosystems and Environment, 2012, 159, 112-122.                                                                        | 5.3  | 329       |
| 9  | Maximizing ecosystem services from conservation biological control: The role of habitat management. Biological Control, 2008, 45, 254-271.                                                                | 3.0  | 323       |
| 10 | The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecology Letters, 2020, 23, 1488-1498.                                    | 6.4  | 319       |
| 11 | Multi-country evidence that crop diversification promotes ecological intensification of agriculture.<br>Nature Plants, 2016, 2, 16014.                                                                    | 9.3  | 267       |
| 12 | IMPROVED FITNESS OF APHID PARASITOIDS RECEIVING RESOURCE SUBSIDIES. Ecology, 2004, 85, 658-666.                                                                                                           | 3.2  | 244       |
| 13 | Consumer attitudes regarding environmentally sustainable wine: an exploratory study of the New<br>Zealand marketplace. Journal of Cleaner Production, 2009, 17, 1195-1199.                                | 9.3  | 239       |
| 14 | Recent advances in conservation biological control of arthropods by arthropods. Biological Control, 2008, 45, 172-175.                                                                                    | 3.0  | 228       |
| 15 | Wound induced defences in plants and their consequences for patterns of insect grazing. Oecologia, 1983, 59, 88-93.                                                                                       | 2.0  | 221       |
| 16 | The future of farming: The value of ecosystem services in conventional and organic arable land. An experimental approach. Ecological Economics, 2008, 64, 835-848.                                        | 5.7  | 192       |
| 17 | Use of Phelia tanacetifolia Strips To Enhance Biological Control of Aphids by Overfly Larvae in Cereal Fields. Journal of Economic Entomology, 1996, 89, 832-840.                                         | 1.8  | 188       |
| 18 | The efficiency of pitfall trapping for polyphagous predatory Carabidae. Ecological Entomology, 1988,                                                                                                      | 2.2  | 182       |

| #  | Article                                                                                                                                                                                   | IF        | CITATIONS            |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|
| 19 | A functional overview of conservation biological control. Crop Protection, 2017, 97, 145-158.                                                                                             | 2.1       | 180                  |
| 20 | The Value of Producing Food, Energy, and Ecosystem Services within an Agro-Ecosystem. Ambio, 2009, 38, 186-193.                                                                           | 5.5       | 166                  |
| 21 | Increasing floral diversity for selective enhancement of biological control agents: A double-edged sward?. Basic and Applied Ecology, 2006, 7, 236-243.                                   | 2.7       | 160                  |
| 22 | Laboratory studies on aggregation, size and fecundity in the black bean aphid, <i>Aphis fabae</i> Scop<br>Bulletin of Entomological Research, 1971, 61, 97-111.                           | 1.0       | 158                  |
| 23 | Field boundaries as barriers to movement of hover flies (Diptera: Syrphidae) in cultivated land.<br>Oecologia, 2003, 134, 605-611.                                                        | 2.0       | 152                  |
| 24 | Enhancing the effectiveness of the parasitoid Diadegma semiclausum (Helen): Movement after use of nectar in the field. Biological Control, 2005, 34, 152-158.                             | 3.0       | 149                  |
| 25 | Habitat Manipulation to Enhance Biological Control of Brassica Pests by Hover Flies (Diptera:) Tj ETQq1 1 0.7843                                                                          | 14 rgBT / | Overlock 10 T<br>145 |
| 26 | The adaptive significance of autumn leaf colours. Oikos, 2002, 99, 402-407.                                                                                                               | 2.7       | 140                  |
| 27 | Organic agriculture and ecosystem services. Environmental Science and Policy, 2010, 13, 1-7.                                                                                              | 4.9       | 137                  |
| 28 | Using selective food plants to maximize biological control of vineyard pests. Journal of Applied<br>Ecology, 2006, 43, 547-554.                                                           | 4.0       | 136                  |
| 29 | Conservation biological control of arthropods using artificial food sprays: Current status and future challenges. Biological Control, 2008, 45, 185-199.                                  | 3.0       | 136                  |
| 30 | The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent. Biological Control, 2006, 39, 179-185.                                   | 3.0       | 133                  |
| 31 | 'Beetle banks' as refuges for beneficial arthropods in farmland: long-term changes in predator communities and habitat. Agricultural and Forest Entomology, 2004, 6, 147-154.             | 1.3       | 128                  |
| 32 | Effects of alyssum flowers on the longevity, fecundity, and sex ratio of the leafroller parasitoid<br>Dolichogenidea tasmanica. Biological Control, 2005, 32, 65-69.                      | 3.0       | 128                  |
| 33 | The responses of polyphagous predators to prey spatial heterogeneity: aggregation by carabid and staphylinid beetles to their cereal aphid prey. Ecological Entomology, 1984, 9, 251-259. | 2.2       | 123                  |
| 34 | Enhancing Biological Control of Leafrollers (Lepidoptera: Tortricidae) by Sowing Buckwheat<br>(Fagopyrum esculentum) in an Orchard. Biocontrol Science and Technology, 1998, 8, 547-558.  | 1.3       | 117                  |
| 35 | Review: Alternatives to synthetic fungicides for <i>Botrytis cinerea</i> management in vineyards.<br>Australian Journal of Grape and Wine Research, 2010, 16, 154-172.                    | 2.1       | 116                  |
| 36 | Economics and adoption of conservation biological control. Biological Control, 2008, 45, 272-280.                                                                                         | 3.0       | 108                  |

| #  | Article                                                                                                                                                                                           | IF         | CITATIONS    |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|
| 37 | Managing biological control services through multiâ€ŧrophic trait interactions: review and guidelines<br>for implementation at local and landscape scales. Biological Reviews, 2018, 93, 306-321. | 10.4       | 107          |
| 38 | Reproductive strategy of winged and wingless morphs of the aphids Sitobion avenae and Metopolophium dirhodum. Annals of Applied Biology, 1977, 85, 319-331.                                       | 2.5        | 104          |
| 39 | Attract and reward: combining chemical ecology and habitat manipulation to enhance biological control in field crops. Journal of Applied Ecology, 2011, 48, 580-590.                              | 4.0        | 103          |
| 40 | The influence of floral resource subsidies on parasitism rates of leafrollers (Lepidoptera:) Tj ETQq0 0 0 rgBT /Over                                                                              | lock 10 Tf | 50,622 Td (1 |
| 41 | The potential of earthworms to restore ecosystem services after opencast mining – A review. Basic and Applied Ecology, 2010, 11, 196-203.                                                         | 2.7        | 96           |
| 42 | Permeability of hedgerows to predatory carabid beetles. Agriculture, Ecosystems and Environment, 1995, 52, 141-148.                                                                               | 5.3        | 95           |
| 43 | Intensified agriculture favors evolved resistance to biological control. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3885-3890.                   | 7.1        | 95           |
| 44 | Effects of buckwheat flowers on leafroller (Lepidoptera: Tortricidae) parasitoids in a New Zealand vineyard. Agricultural and Forest Entomology, 2002, 4, 39-45.                                  | 1.3        | 92           |
| 45 | The effects of floral understoreys on parasitism of leafrollers (Lepidoptera: Tortricidae) on apples in<br>New Zealand. Agricultural and Forest Entomology, 2006, 8, 25-34.                       | 1.3        | 88           |
| 46 | Attractiveness of single and multiple species flower patches to beneficial insects in agroecosystems.<br>Annals of Applied Biology, 2006, 148, 39-47.                                             | 2.5        | 87           |
| 47 | The population consequences of natural enemy enhancement, and implications for conservation biological control. Ecology Letters, 2008, 6, 604-612.                                                | 6.4        | 86           |
| 48 | Ecological restoration of farmland: progress and prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 831-847.                                           | 4.0        | 84           |
| 49 | Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. Journal of Applied Ecology, 2015, 52, 1274-1282.                                 | 4.0        | 84           |
| 50 | The efficiency of a new lightweight suction sampler for sampling aphids and their predators in arable land. Annals of Applied Biology, 1994, 124, 11-17.                                          | 2.5        | 83           |
| 51 | Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agronomy for Sustainable Development, 2016, 36, 1.                                       | 5.3        | 82           |
| 52 | Habitat manipulation in lucerne Medicago sativa: arthropod population dynamics in harvested and<br>'refuge' crop strips. Journal of Applied Ecology, 2002, 39, 445-454.                           | 4.0        | 80           |
| 53 | Effects of grassy banks on the dispersal of some carabid beetles (Coleoptera: Carabidae) on farmland.<br>Biological Conservation, 1995, 71, 347-355.                                              | 4.1        | 79           |
|    |                                                                                                                                                                                                   |            |              |

Relative Frequencies of Visits to Selected Insectary Plants by Predatory Hoverflies (Diptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Td 1.4

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | History, current situation and challenges for conservation biological control. Biological Control, 2019, 131, 25-35.                                                                                                                     | 3.0 | 79        |
| 56 | A screen of worldwide wheat cultivars for hydroxamic acid levels and aphid antixenosis. Annals of Applied Biology, 1992, 121, 11-18.                                                                                                     | 2.5 | 78        |
| 57 | Wound-induced changes in the palatability of Betula pubescens and B. pendula. Oecologia, 1984, 61, 372-375.                                                                                                                              | 2.0 | 77        |
| 58 | The role of supporting ecosystem services in conventional and organic arable farmland. Ecological Complexity, 2010, 7, 302-310.                                                                                                          | 2.9 | 77        |
| 59 | Agricultural intensification drives landscapeâ€context effects on host–parasitoid interactions in agroecosystems. Journal of Applied Ecology, 2012, 49, 706-714.                                                                         | 4.0 | 77        |
| 60 | The selective use of floral resources by the hoverfly <i>Episyrphus balteatus</i> (Diptera: Syrphidae)<br>on farmland. Annals of Applied Biology, 1993, 122, 223-231.                                                                    | 2.5 | 76        |
| 61 | The need for effective marking and tracking techniques for monitoring the movements of insect predators and parasitoids. International Journal of Pest Management, 2004, 50, 147-151.                                                    | 1.8 | 72        |
| 62 | Effects of hydroxamic acids on the resistance of wheat to the aphid Sitobion avenae. Annals of Applied<br>Biology, 1986, 109, 193-198.                                                                                                   | 2.5 | 71        |
| 63 | Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agricultural and<br>Forest Entomology, 2011, 13, 45-57.                                                                                             | 1.3 | 70        |
| 64 | Foraging by the carabid Agonum dorsale in the field. Ecological Entomology, 1985, 10, 181-189.                                                                                                                                           | 2.2 | 68        |
| 65 | Video analysis to determine how habitat strata affects predator diversity and predation of Epiphyas postvittana (Lepidoptera: Tortricidae) in a vineyard. Biological Control, 2007, 41, 230-236.                                         | 3.0 | 68        |
| 66 | Habitat manipulation to mitigate the impacts of invasive arthropod pests. Biological Invasions, 2010, 12, 2933-2945.                                                                                                                     | 2.4 | 68        |
| 67 | Impact of soil stockpiling and mining rehabilitation on earthworm communities. Pedobiologia, 2011, 54, S99-S102.                                                                                                                         | 1.2 | 67        |
| 68 | The contribution of potential beneficial insectary plant species to adult hoverfly (Diptera: Syrphidae)<br>fitness. Biological Control, 2012, 61, 1-6.                                                                                   | 3.0 | 65        |
| 69 | Effects of an herbivore-induced plant volatile on arthropods from three trophic levels in brassicas.<br>Biological Control, 2010, 53, 62-67.                                                                                             | 3.0 | 64        |
| 70 | Beyond nectar provision: the other resource requirements of parasitoid biological control agents.<br>Entomologia Experimentalis Et Applicata, 2016, 159, 207-221.                                                                        | 1.4 | 63        |
| 71 | Migration of parasitoids (Hymenoptera: Braconidae) of cereal aphids (Hemiptera: Aphididae) between<br>grassland, early-sown cereals and late-sown cereals in southern England. Bulletin of Entomological<br>Research, 1987, 77, 555-568. | 1.0 | 59        |
| 72 | Field manipulation of populations of individual staphylinid species in cereals and their impact on aphid populations. Ecological Entomology, 1991, 16, 17-24.                                                                            | 2.2 | 55        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Arable acronyms analysed – a review of integrated arable farming systems research in Western<br>Europe. Annals of Applied Biology, 1994, 125, 399-438.                                        | 2.5 | 54        |
| 74 | Accumulation of hydroxamic acids during wheat germination. Phytochemistry, 1999, 50, 17-24.                                                                                                   | 2.9 | 54        |
| 75 | Implications of floral resources for predation by an omnivorous lacewing. Basic and Applied Ecology, 2008, 9, 172-181.                                                                        | 2.7 | 54        |
| 76 | The role of odour and visual cues in the pan-trap catching of hoverflies (Diptera: Syrphidae). Annals of Applied Biology, 2006, 148, 173-178.                                                 | 2.5 | 53        |
| 77 | Comparing existing weeds and commonly used insectary plants as floral resources for a parasitoid.<br>Biological Control, 2015, 81, 15-20.                                                     | 3.0 | 53        |
| 78 | Wound-induced changes in the acceptability of tomato to larvae of Spodoptera littoralis: a<br>laboratory bioassay. Ecological Entomology, 1985, 10, 155-158.                                  | 2.2 | 52        |
| 79 | Flower color affects tri-trophic-level biocontrol interactions. Biological Control, 2004, 30, 584-590.                                                                                        | 3.0 | 52        |
| 80 | Duration of cereal aphid populations and the effects on wheat yield and breadmaking quality. Annals of Applied Biology, 1981, 98, 169-178.                                                    | 2.5 | 51        |
| 81 | Phenology and Ecology of Hoverflies (Diptera: Syrphidae) in New Zealand. Environmental Entomology,<br>1995, 24, 595-600.                                                                      | 1.4 | 51        |
| 82 | The effect of weeds on the numbers of hoverfly (Diptera: Syrphidae) adults and the distribution and composition of their eggs in winter wheat. Annals of Applied Biology, 1993, 123, 499-515. | 2.5 | 50        |
| 83 | Weed seed predation in organic and conventional fields. Biological Control, 2009, 49, 11-16.                                                                                                  | 3.0 | 50        |
| 84 | Nectar to improve parasitoid fitness in biological control: Does the sucrose:hexose ratio matter?.<br>Basic and Applied Ecology, 2010, 11, 264-271.                                           | 2.7 | 50        |
| 85 | Pollen feeding by adults of the hoverfly <i>Melanostoma fasciatum</i> (Diptera: Syrphidae). New Zealand Journal of Zoology, 1995, 22, 387-392.                                                | 1.1 | 49        |
| 86 | Trap cropping to manage green vegetable bug Nezara viridula (L.) (Heteroptera: Pentatomidae) in sweet<br>corn in New Zealand. Agricultural and Forest Entomology, 2002, 4, 101-107.           | 1.3 | 48        |
| 87 | â€~Attract and reward': Combining a herbivore-induced plant volatile with floral resource<br>supplementation – Multi-trophic level effects. Biological Control, 2013, 64, 106-115.            | 3.0 | 48        |
| 88 | Habitat factors influencing the distribution of polyphagous predatory insects between field boundaries. Annals of Applied Biology, 1992, 120, 197-202.                                        | 2.5 | 47        |
| 89 | Habitat Management for Pest Management: Limitations and Prospects. Annals of the Entomological Society of America, 2019, 112, 302-317.                                                        | 2.5 | 47        |
| 90 | Hydroxamic acid levels in Chilean and British wheat seedlings. Annals of Applied Biology, 1991, 118, 223-227.                                                                                 | 2.5 | 46        |

| #   | Article                                                                                                                                                                                          | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The ecological significance of rapid wound-induced changes in plants: insect grazing and plant competition. Oecologia, 1992, 91, 266-272.                                                        | 2.0 | 46        |
| 92  | Food webs and biological control: A review of molecular tools used to reveal trophic interactions in agricultural systems. Food Webs, 2016, 9, 4-11.                                             | 1.2 | 46        |
| 93  | Significance and value of non-traded ecosystem services on farmland. PeerJ, 2015, 3, e762.                                                                                                       | 2.0 | 46        |
| 94  | Field evaluation of the â€~attract and reward' biological control approach in vineyards. Annals of Applied Biology, 2011, 159, 69-78.                                                            | 2.5 | 45        |
| 95  | Title is missing!. Ecotoxicology, 1998, 7, 297-304.                                                                                                                                              | 2.4 | 44        |
| 96  | Floral diversity, parasitoids and hyperparasitoids – A laboratory approach. Basic and Applied Ecology,<br>2008, 9, 588-597.                                                                      | 2.7 | 44        |
| 97  | Using Next-Generation Sequencing to Analyse the Diet of a Highly Endangered Land Snail<br>(Powelliphanta augusta) Feeding on Endemic Earthworms. PLoS ONE, 2013, 8, e75962.                      | 2.5 | 43        |
| 98  | Measuring parasitoid movement from floral resources in a vineyard. Biological Control, 2008, 46, 107-113.                                                                                        | 3.0 | 42        |
| 99  | Adding floral nectar resources to improve biological control: Potential pitfalls of the fourth trophic level. Basic and Applied Ecology, 2009, 10, 554-562.                                      | 2.7 | 42        |
| 100 | If and when successful classical biological control fails. Biological Control, 2014, 72, 76-79.                                                                                                  | 3.0 | 42        |
| 101 | Effect of plant nectars on adult longevity of the stinkbug parasitoid, <i>Trissolcus basalis</i> .<br>International Journal of Pest Management, 2005, 51, 321-324.                               | 1.8 | 41        |
| 102 | Palatability of British trees to insects: constitutive and induced defences. Oecologia, 1986, 69, 316-319.                                                                                       | 2.0 | 40        |
| 103 | The phenology and pollen feeding of three hover fly (Diptera: Syrphidae) species in Canterbury, New<br>Zealand. New Zealand Journal of Zoology, 1999, 26, 105-115.                               | 1.1 | 40        |
| 104 | The ecology of predatory hoverflies as ecosystem-service providers in agricultural systems.<br>Biological Control, 2020, 151, 104405.                                                            | 3.0 | 40        |
| 105 | Development and Evaluation of Potatoes Transgenic for a cry1Ac9 Gene Conferring Resistance to Potato Tuber Moth. Journal of the American Society for Horticultural Science, 2002, 127, 590-596.  | 1.0 | 40        |
| 106 | Mycophagy as a factor limiting predation of aphids (Hemiptera: Aphididae) by staphylinid beetles<br>(Coleoptera: Staphylinidae) in cereals. Bulletin of Entomological Research, 1991, 81, 25-31. | 1.0 | 39        |
| 107 | Management of understorey to reduce the primary inoculum of Botrytis cinerea: Enhancing ecosystem services in vineyards. Biological Control, 2007, 40, 57-64.                                    | 3.0 | 39        |
| 108 | Effects of feeding position of the aphids Sitobion avenae and Metopolophium dirhodum on wheat yield and quality. Annals of Applied Biology, 1978, 90, 11-20.                                     | 2.5 | 38        |

| #   | Article                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Manipulating floral resources dispersion for hoverflies (Diptera: Syrphidae) in a California lettuce<br>agro-ecosystem. Biological Control, 2011, 59, 215-220.                                                    | 3.0 | 38        |
| 110 | Sliding Window Analyses for Optimal Selection of Mini-Barcodes, and Application to<br>454-Pyrosequencing for Specimen Identification from Degraded DNA. PLoS ONE, 2012, 7, e38215.                                | 2.5 | 38        |
| 111 | Does carbaryl increase fluctuating asymmetry in damselflies under field conditions? A mesocosm<br>experiment with Xanthocnemis zealandica (Odonata: Zygoptera). Journal of Applied Ecology, 1999, 36,<br>534-543. | 4.0 | 37        |
| 112 | An evaluation of the potential effects of ivermectin on the decomposition of cattle dung pats.<br>Veterinary Record, 1993, 133, 365-371.                                                                          | 0.3 | 37        |
| 113 | Changes in the hydroxamic acid content of maize leaves with time and after artificial damage;<br>implications for insect attack. Annals of Applied Biology, 1991, 119, 239-249.                                   | 2.5 | 36        |
| 114 | The impact of floral resources and omnivory on a four trophic level food web. Bulletin of Entomological Research, 2009, 99, 275-285.                                                                              | 1.0 | 36        |
| 115 | An integrative taxonomic approach to the identification of three new New Zealand endemic earthworm species (Acanthodrilidae, Octochaetidae: Oligochaeta). Zootaxa, 2011, 2994, 21.                                | 0.5 | 36        |
| 116 | Trichoderma atroviride LU132 promotes plant growth but not induced systemic resistance to Plutella xylostella in oilseed rape. BioControl, 2014, 59, 241-252.                                                     | 2.0 | 36        |
| 117 | Non-target parasitism of the endemic New Zealand red admiral butterfly (Bassaris gonerilla) by the introduced biological control agent Pteromalus puparum. Biological Control, 2003, 27, 329-335.                 | 3.0 | 35        |
| 118 | Searching by Adalia bipunctata (L.) (Coleoptera: Coccinellidae) and escape behaviour of its aphid and<br>cicadellid prey on lime (Tilia × vulgaris Hayne). Ecological Entomology, 1976, 1, 139-142.               | 2.2 | 34        |
| 119 | Diel activity patterns in an arable collembolan community. Applied Soil Ecology, 2001, 17, 63-80.                                                                                                                 | 4.3 | 34        |
| 120 | The effect of introducing the aphid-pathogenic fungus Erynia neoaphidis into populations of cereal aphids. Annals of Applied Biology, 1990, 117, 683-691.                                                         | 2.5 | 33        |
| 121 | Abiotic and biotic factors influencing the winter distribution of predatory insects. Oecologia, 1992, 89, 78-84.                                                                                                  | 2.0 | 33        |
| 122 | Species composition, abundance, and activity of predatory arthropods in carrot fields, Canterbury,<br>New Zealand. New Zealand Journal of Zoology, 1997, 24, 205-212.                                             | 1.1 | 33        |
| 123 | Influence of plants on invertebrate predators. , 1998, , 83-100.                                                                                                                                                  |     | 33        |
| 124 | Hydroxamic acid glucosides in honeydew of aphids feeding on wheat. Journal of Chemical Ecology, 1992, 18, 841-846.                                                                                                | 1.8 | 32        |
| 125 | Excised or intact inflorescences? Methodological effects on parasitoid wasp longevity. Biological Control, 2007, 40, 347-354.                                                                                     | 3.0 | 32        |
| 126 | Understanding the pathways from biodiversity to agro-ecological outcomes: A new, interactive approach. Agriculture, Ecosystems and Environment, 2020, 301, 107053.                                                | 5.3 | 32        |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Rates of consumption of cereal aphids by some polyphagous predators in the laboratory. Entomologia<br>Experimentalis Et Applicata, 1986, 41, 69-73.                                            | 1.4 | 31        |
| 128 | Searching behavior of an aphid parasitoid and its hyperparasitoid with and without floral nectar.<br>Biological Control, 2011, 57, 79-84.                                                      | 3.0 | 31        |
| 129 | Faeces of generalist predators as â€~biodiversity capsules': A new tool for biodiversity assessment in remote and inaccessible habitats. Food Webs, 2015, 3, 1-6.                              | 1.2 | 31        |
| 130 | Patterns of aphid resistance in the genus Vicia. Annals of Applied Biology, 1984, 104, 327-338.                                                                                                | 2.5 | 30        |
| 131 | Spatial changes in invertebrate predation rate in winter wheat following treatment with dimethoate.<br>Entomologia Experimentalis Et Applicata, 1996, 78, 9-17.                                | 1.4 | 30        |
| 132 | â€~New species association' biological control? Two coccinellid species and an invasive psyllid pest in<br>New Zealand. Biological Control, 2012, 62, 86-92.                                   | 3.0 | 30        |
| 133 | Genetic variation in an introduced aphid pest ( Metopolophium dirhodum ) in New Zealand and relation to individuals from europe. Molecular Ecology, 1997, 6, 255-265.                          | 3.9 | 29        |
| 134 | Providing plant foods for natural enemies in farming systems: balancing practicalities and theory. , 2005, , 326-347.                                                                          |     | 29        |
| 135 | Environmental assessment of veterinary avermectins in temperate pastoral ecosystems. Annals of Applied Biology, 1996, 128, 329-348.                                                            | 2.5 | 28        |
| 136 | Understorey management increases grape quality, yield and resistance to Botrytis cinerea.<br>Agriculture, Ecosystems and Environment, 2007, 122, 349-356.                                      | 5.3 | 28        |
| 137 | Employing Chemical Ecology to Understand and Exploit Biodiversity for Pest Management. , 2012, ,<br>185-195.                                                                                   |     | 28        |
| 138 | Insect herbivory in relation to dynamic changes in host plant quality*. Biological Journal of the Linnean Society, 1988, 35, 339-350.                                                          | 1.6 | 27        |
| 139 | Feeding behaviour of the staphylinid beetle <i>Tachyporus hypnorum</i> in relation to its potential for reducing aphid numbers in wheat. Annals of Applied Biology, 1990, 117, 267-276.        | 2.5 | 27        |
| 140 | The sugarcane lophopid planthopper <i>Pyrilla perpusilla</i> (Homoptera: Lophopidae): a review of its biology, pest status and control. Bulletin of Entomological Research, 1996, 86, 485-498. | 1.0 | 27        |
| 141 | Expression of cry1Ac9 and cry9Aa2 genes under a potato light-inducible Lhca3 promoter in transgenic potatoes for tuber moth resistance. Euphytica, 2006, 147, 297-309.                         | 1.2 | 27        |
| 142 | Enhancing biological control by an omnivorous lacewing: Floral resources reduce aphid numbers at<br>low aphid densities. Biological Control, 2010, 55, 159-165.                                | 3.0 | 27        |
| 143 | The importance of viticultural landscape features and ecosystem service enhancement for native butterflies in New Zealand vineyards. Journal of Insect Conservation, 2012, 16, 13-23.          | 1.4 | 27        |
| 144 | The effect of the grain aphid,Sitobion avenae (F.), on winter wheat in England: an analysis of the economics of control practice and forecasting systems. Crop Protection, 1984, 3, 209-222.   | 2.1 | 26        |

| #   | Article                                                                                                                                                                                                                   | IF                 | CITATIONS     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| 145 | Video analysis of predation by polyphagous invertebrate predators in the laboratory and field.<br>Biological Control, 2004, 29, 5-13.                                                                                     | 3.0                | 26            |
| 146 | Unâ€nesting <scp>DNA</scp> Russian dolls – the potential for constructing food webs using residual <scp>DNA</scp> in empty aphid mummies. Molecular Ecology, 2014, 23, 3925-3933.                                         | 3.9                | 26            |
| 147 | Wound-Induced Changes in Palatability in Birch (Betula pubescens Ehrh. ssp. Pubescens). American<br>Naturalist, 1982, 120, 816-818.                                                                                       | 2.1                | 26            |
| 148 | Wound-induced changes in tomato leaves and their effects on the feeding patterns of larval lepidoptera. Oecologia, 1995, 101, 251-257.                                                                                    | 2.0                | 25            |
| 149 | The effect of hydoroxamic acid concentration at late growth stages of wheat on the performance of the aphid <i>Sitobion avenae</i> . Annals of Applied Biology, 1997, 130, 387-396.                                       | 2.5                | 25            |
| 150 | Patterns of Bioactivity and Herbivory on Nothofagus Species from Chile and New Zealand. Journal of<br>Chemical Ecology, 2000, 26, 41-56.                                                                                  | 1.8                | 25            |
| 151 | Habitat manipulation in lucerne (Medicago sativa L.): Strip harvesting to enhance biological control of insect pests. International Journal of Pest Management, 2001, 47, 81-88.                                          | 1.8                | 25            |
| 152 | Effect of hunger on yellow water trap catches of hoverfly (Diptera: Syrphidae) adults. Agricultural<br>and Forest Entomology, 2001, 3, 35-40.                                                                             | 1.3                | 25            |
| 153 | Floral resources to enhance the potential of the parasitoid <i>Aphidius colemani</i> for biological control of the aphid <i>Myzus persicae</i> . Journal of Applied Entomology, 2019, 143, 34-42.                         | 1.8                | 25            |
| 154 | Effects of Benzimidazole and Triazole Fungicide Use on Epigeic Species of Collembola in Wheat.<br>Ecotoxicology and Environmental Safety, 2000, 46, 64-72.                                                                | 6.0                | 24            |
| 155 | Influence of host diet on parasitoid fitness: unravelling the complexity of a temperate pastoral agroecosystem. Entomologia Experimentalis Et Applicata, 2007, 123, 63-71.                                                | 1.4                | 24            |
| 156 | Reducing the Impact of Pesticides on Biological Control in Australian Vineyards: Pesticide Mortality<br>and Fecundity Effects on an Indicator Species, the Predatory Mite Euseius victoriensis (Acari:) Tj ETQq0 0 0 rgBT | /O <b>ve</b> rlock | 1027#f 50 297 |
| 157 | Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a<br>longâ€ŧerm grassland management trial. Environmental Microbiology Reports, 2013, 5, 404-413.                       | 2.4                | 24            |
| 158 | Using municipal biosolids in ecological restoration: What is good for plants and soil may not be good for endemic earthworms. Ecological Engineering, 2014, 70, 414-421.                                                  | 3.6                | 24            |
| 159 | The winter development, reproduction and lifespan of viviparae of Sitobion avenae (F.) (Hemiptera:) Tj ETQq1 1                                                                                                            | 0.784314<br>1.0    | rgBT /Overlo  |
| 160 | Capture efficiency of insect natural enemies from tall and short vegetation using vacuum sampling.<br>Annals of Applied Biology, 1999, 135, 463-467.                                                                      | 2.5                | 23            |
| 161 | Pollen grains as markers to track the movements of generalist predatory insects in agroecosystems.<br>International Journal of Pest Management, 2004, 50, 165-171.                                                        | 1.8                | 23            |
| 162 | Remotely sensed landscape heterogeneity as a rapid tool for assessing local biodiversity value in a highly modified New Zealand landscape. Biodiversity and Conservation, 2005, 14, 1469-1485.                            | 2.6                | 23            |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | From poachers to gamekeepers: perceptions of farmers towards ecosystem services on arable farmland. International Journal of Agricultural Sustainability, 2007, 5, 39-50.                             | 3.5 | 23        |
| 164 | Toxicity of estuarine sediments using a full life-cycle bioassay with the marine copepod Robertsonia propinqua. Ecotoxicology and Environmental Safety, 2008, 70, 469-474.                            | 6.0 | 23        |
| 165 | Pyrosequencing of prey DNA in faeces of carnivorous land snails to facilitate ecological restoration and relocation programmes. Oecologia, 2014, 175, 737-746.                                        | 2.0 | 23        |
| 166 | The influence of wheat growth stage on yield reductions caused by the roseâ€grain aphid,<br><i>Metopolophium dirhodum</i> . Annals of Applied Biology, 1984, 105, 7-14.                               | 2.5 | 22        |
| 167 | Abundance and species richness of fieldâ€margin and pasture spiders (Araneae) in Canterbury, New<br>Zealand. New Zealand Journal of Zoology, 2003, 30, 57-67.                                         | 1.1 | 22        |
| 168 | Advanced mine restoration protocols facilitate early recovery of soil microbial biomass, activity and functional diversity. Basic and Applied Ecology, 2014, 15, 599-606.                             | 2.7 | 22        |
| 169 | Temporal and spatial variation in palatability of soybean and cotton leaves following wounding.<br>Oecologia, 1989, 79, 520-525.                                                                      | 2.0 | 21        |
| 170 | Oviposition preference of <i>Lycaena salustius</i> for, and larval performance on, a novel host plant:<br>an example of ecological fitting. Ecological Entomology, 2011, 36, 616-624.                 | 2.2 | 21        |
| 171 | The economics of reduced-rate insecticide applications to control aphids in winter wheat. Annals of Applied Biology, 1991, 119, 451-464.                                                              | 2.5 | 20        |
| 172 | Models to assist the evaluation of the impact of avermectins on dung insect populations. Ecological<br>Modelling, 1998, 110, 165-173.                                                                 | 2.5 | 20        |
| 173 | Production of sexual morphs by the monoecious cereal aphid Sitobion avenae. Entomologia<br>Experimentalis Et Applicata, 1985, 38, 239-247.                                                            | 1.4 | 19        |
| 174 | Benthic meiofauna community composition at polluted and non-polluted sites in New Zealand intertidal environments. Marine Pollution Bulletin, 2007, 54, 1801-1812.                                    | 5.0 | 19        |
| 175 | Food and Wine Production Practices: An Analysis of Consumer Views. Journal of Wine Research, 2011, 22, 79-86.                                                                                         | 1.5 | 19        |
| 176 | Further evaluation of the southern ladybird (Cleobora mellyi) as a biological control agent of the<br>invasive tomato–potato psyllid (Bactericera cockerelli). Biological Control, 2015, 90, 157-163. | 3.0 | 19        |
| 177 | Effects of vernalisation and aphid culture history on the relative susceptibilities of wheat cultivars<br>to aphids. Annals of Applied Biology, 1981, 99, 71-75.                                      | 2.5 | 18        |
| 178 | Antibiotic resistance in potato cultivars to the aphid Myzus persicae. Annals of Applied Biology, 1982, 100, 383-391.                                                                                 | 2.5 | 18        |
| 179 | A four-year investigation into the efficacy of domiciles for enhancement of bumble bee populations.<br>Agricultural and Forest Entomology, 2000, 2, 141-146.                                          | 1.3 | 18        |
| 180 | Effect of boundary type and season on predatory arthropods associated with field margins on New<br>Zealand farmland. New Zealand Journal of Zoology, 2014, 41, 268-284.                               | 1.1 | 18        |

13

| #   | Article                                                                                                                                                                                                 | IF                 | CITATIONS          |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|
| 181 | Molecular and morphological analyses of faeces to investigate the diet of earthworm predators:<br>Example of a carnivorous land snail endemic to New Zealand. Pedobiologia, 2011, 54, S153-S158.        | 1.2                | 17                 |
| 182 | Resistance of potatoes transgenic for a cry1Ac9 gene, to Phthorimaea operculella (Lepidoptera:) Tj ETQq0 0 0 rgf                                                                                        | 3T /Qverloo<br>2.5 | ck 10 Tf 50 7      |
| 183 | Using stated preference techniques to value four key ecosystem services on New Zealand arable land.<br>International Journal of Agricultural Sustainability, 2009, 7, 279-291.                          | 3.5                | 16                 |
| 184 | Components of resistance to <i>Aphis fabae</i> in faba bean cultivars. Entomologia Experimentalis Et<br>Applicata, 1986, 40, 35-40.                                                                     | 1.4                | 15                 |
| 185 | Genetic diversity of an introduced pest, the green spruce aphid Elatobium abietinum (Hemiptera:) Tj ETQq1 1 0.7<br>537-543.                                                                             | 84314 rgE<br>1.0   | BT /Overlock<br>15 |
| 186 | Interspecific competition between two generalist parasitoids that attack the leafroller <i>Epiphyas postvittana</i> (Lepidoptera: Tortricidae). Bulletin of Entomological Research, 2015, 105, 426-433. | 1.0                | 15                 |
| 187 | Assessing pollinators' use of floral resource subsidies in agri-environment schemes: An illustration<br>using <i>Phacelia tanacetifolia</i> and honeybees. PeerJ, 2016, 4, e2677.                       | 2.0                | 15                 |
| 188 | British Trees and Insects: The Role of Palatability. American Naturalist, 1981, 118, 916-919.                                                                                                           | 2.1                | 14                 |
| 189 | A computer-based advisory system for cereal aphid control. Computers and Electronics in Agriculture, 1986, 1, 263-270.                                                                                  | 7.7                | 14                 |
| 190 | The potential to manipulate the numbers of insects in lucerne by strip cutting. Australian Journal of Entomology, 2000, 39, 39-41.                                                                      | 1.1                | 14                 |
| 191 | Impacts of insect-resistant transgenic potatoes on the survival and fecundity of a parasitoid and an insect predator. Biological Control, 2006, 37, 224-230.                                            | 3.0                | 14                 |
| 192 | The activities of generalist parasitoids can be segregated between crop and adjacent non-crop habitats. Journal of Pest Science, 2017, 90, 275-286.                                                     | 3.7                | 14                 |
| 193 | Weed floral resources and commonly used insectary plants to increase the efficacy of a whitefly parasitoid. BioControl, 2019, 64, 553-561.                                                              | 2.0                | 14                 |
| 194 | Scarcity of ecosystem services: an experimental manipulation of declining pollination rates and its economic consequences for agriculture. PeerJ, 2016, 4, e2099.                                       | 2.0                | 14                 |
| 195 | The host-plant relationships of apterous virginoparae of the grass aphid Metopolophiurn festucae<br>cerealium. Annals of Applied Biology, 1986, 108, 567-576.                                           | 2.5                | 13                 |
| 196 | Effects of DIMBOA levels in wheat on the susceptibility of the grain aphid (Sitobion avenue) to deltamethrin. Annals of Applied Biology, 1993, 122, 427-433.                                            | 2.5                | 13                 |
| 197 | Effects of Harvest on Survival and Dispersal of Insect Predators in Hay Lucerne. Biological Agriculture and Horticulture, 2000, 17, 339-348.                                                            | 1.0                | 13                 |

198Can increased niche opportunities and release from enemies explain the success of introduced<br/>Yellowhammer populations in New Zealand?. Ibis, 2005, 147, 598-607.1.9

| #   | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Host Plant Selection by the Wheat Bug, Nysius huttoni (Hemiptera: Lygaeidae) on a Range of Potential<br>Trap Plant Species. Journal of Economic Entomology, 2018, 111, 586-594.                                | 1.8 | 13        |
| 200 | Sensitivity of aquatic life stages of <i>Xanthocnemis zealandica</i> (Odonata: Zygoptera) to<br>azinphosâ€methyi and carbaryi. New Zealand Journal of Marine and Freshwater Research, 2000, 34,<br>117-123.    | 2.0 | 12        |
| 201 | Field evaluation of potato plants transgenic for a cry1Ac gene conferring resistance to potato tuber<br>moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Crop Protection, 2006, 25, 216-224. | 2.1 | 12        |
| 202 | Predatory hoverflies increase oviposition in response to colour stimuli offering no reward:<br>Implications for biological control. Basic and Applied Ecology, 2015, 16, 544-552.                              | 2.7 | 12        |
| 203 | The effects of growth stage in wheat on yield reductions caused by the rose-grain aphid<br>Metopolophium dirhodum. Annals of Applied Biology, 1984, 104, 393-397.                                              | 2.5 | 11        |
| 204 | Economic consequences of pesticide use for grain aphid control on winter wheat in 1984 in England.<br>Crop Protection, 1990, 9, 73-78.                                                                         | 2.1 | 11        |
| 205 | RESIDUAL TOXICITIES OF THREE INSECTICIDES TO FOUR SPECIES (COLEOPTERA: CARABIDAE) OF ARTHROPOD PREDATOR. Canadian Entomologist, 1996, 128, 1115-1124.                                                          | 0.8 | 11        |
| 206 | Life cycle, behaviour and conservation of the large endemic weevil, <i>Hadramphus spinipennis</i> on<br>the Chatham Islands, New Zealand. New Zealand Journal of Zoology, 1999, 26, 55-66.                     | 1.1 | 11        |
| 207 | Vineyard Pesticides and Their Effects on Invertebrate Biomarkers and Bioindicator Species in New Zealand. Bulletin of Environmental Contamination and Toxicology, 2003, 71, 1131-8.                            | 2.7 | 11        |
| 208 | Enhancing ecosystem services in vineyards: using cover crops to decrease botrytis bunch rot severity.<br>International Journal of Agricultural Sustainability, 2007, 5, 305-314.                               | 3.5 | 11        |
| 209 | Flowering alyssum (Lobularia maritima) promote arthropod diversity and biological control of Myzus persicae. Journal of Asia-Pacific Entomology, 2020, 23, 634-640.                                            | 0.9 | 11        |
| 210 | Bactericera cockerelli (Sulc), a potential threat to China's potato industry. Journal of Integrative<br>Agriculture, 2020, 19, 338-349.                                                                        | 3.5 | 11        |
| 211 | A direct-fired steam weeder. Weed Research, 2009, 49, 553-556.                                                                                                                                                 | 1.7 | 10        |
| 212 | Host Plants Affect the Foraging Success of Two Parasitoids that Attack Light Brown Apple Moth<br>Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae). PLoS ONE, 2015, 10, e0124773.                       | 2.5 | 10        |
| 213 | Row Covers: Effects of Wool and Other Materials on Pest Numbers, Microclimate, and Crop Quality.<br>Journal of Economic Entomology, 1997, 90, 1661-1664.                                                       | 1.8 | 9         |
| 214 | Zinc sulfate and atrazine toxicity to the marine harpacticoid copepod <i>Robertsonia propinqua</i> .<br>New Zealand Journal of Marine and Freshwater Research, 2008, 42, 93-98.                                | 2.0 | 9         |
| 215 | Using molecular tools to identify New Zealand endemic earthworms in a mine restoration project.<br>Zoology in the Middle East, 2010, 51, 31-40.                                                                | 0.6 | 9         |
| 216 | New records of springtails in New Zealand pasture: how well are our pastoral invertebrates known?.<br>New Zealand Journal of Agricultural Research, 2013, 56, 93-101.                                          | 1.6 | 9         |

| #   | Article                                                                                                                                                                                          | IF                | CITATIONS          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|
| 217 | Incongruence between morphological and molecular markers in the butterfly genus<br><b><i>Zizina</i></b> (Lepidoptera: Lycaenidae) in New Zealand. Systematic Entomology, 2013, 38, 151-163.      | 3.9               | 8                  |
| 218 | Effects of biosolids on biodiesel crop yield and belowground communities. Ecological Engineering, 2014, 68, 270-278.                                                                             | 3.6               | 8                  |
| 219 | Conservation Biological Control of Insect Pests. Sustainable Agriculture Reviews, 2018, , 103-124.                                                                                               | 1.1               | 8                  |
| 220 | Effects of Reduced Rates of Two Insecticides on Enzyme Activity and Mortality of an Aphid and Its<br>Lacewing Predator. Journal of Economic Entomology, 2007, 100, 11-19.                        | 1.8               | 8                  |
| 221 | The effect of maize leaf damage on the survival and growth rate of Rhopalosiphum padi. Annals of<br>Applied Biology, 1991, 119, 251-256.                                                         | 2.5               | 7                  |
| 222 | Biology and Management of the New Zealand Endemic Wheat Bug, Nysius huttoni (Hemiptera:) Tj ETQq0 0 0 rgE                                                                                        | BT /Overlo<br>2.0 | ck 10 Tf 50 5      |
| 223 | A computer-based advisory system for cereal aphids-field-testing the model. Annals of Applied Biology, 1991, 118, 503-512.                                                                       | 2.5               | 6                  |
| 224 | The use and value of prior knowledge assessments in ecology curriculum design. Journal of<br>Biological Education, 1999, 33, 201-203.                                                            | 1.5               | 6                  |
| 225 | Editorial: Molecular and isotopic approaches to food webs in agroecosystems. Food Webs, 2016, 9, 1-3.                                                                                            | 1.2               | 6                  |
| 226 | First record of a possible predatory collembolan species, <i>Dicyrtoma fusca</i> (Collembola:) Tj ETQq0 0 0 rgBT                                                                                 | /Overlock<br>1.4  | 2 10 Tf 50 38      |
| 227 | Potential inter-guild interactions to enhance biological control of Bactericera cockerelli on tomatoes: a laboratory and cage study. BioControl, 2021, 66, 343-353.                              | 2.0               | 6                  |
| 228 | Evaluating the Economic and Social Impact of Soil Microbes. , 2010, , 399-417.                                                                                                                   |                   | 6                  |
| 229 | Evaluation of insecticides for the control of the green vegetable bug, Nezara viridula (L.) (Hemiptera:) Tj ETQq1 1<br>Management, 2003, 49, 105-108.                                            | 0.784314<br>1.8   | 1 rgBT /Overl<br>5 |
| 230 | Age-specific bioassays and fecundity of Phthorimaea operculella (Lepidoptera: Gelechiidae) reared on cry1Ac -transgenic potato plants. Annals of Applied Biology, 2005, 146, 493-499.            | 2.5               | 5                  |
| 231 | An experimental approach to simulate transgene pyramiding for the deployment of cry genes to control potato tuber moth (Phthorimaea operculella). Annals of Applied Biology, 2006, 148, 231-238. | 2.5               | 5                  |
| 232 | Can ecosystem-scale translocations mitigate the impact of climate change on terrestrial biodiversity?<br>Promises, pitfalls, and possibilities. F1000Research, 2016, 5, 146.                     | 1.6               | 5                  |
| 233 | Nectar from oilseed rape and floral subsidies enhances longevity of an aphid parasitoid more than does host honeydew. BioControl, 2016, 61, 631-638.                                             | 2.0               | 5                  |
| 234 | Delivery of multiple ecosystem services in pasture by shelter created from the hybrid sterile bioenergy grass Miscanthus x giganteus. Scientific Reports, 2019, 9, 5575.                         | 3.3               | 5                  |

| #   | Article                                                                                                                                                                                                    | IF                | CITATIONS     |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
| 235 | Plant-Mediated Behavioural Avoidance of a Weevil Towards Its Biological Control Agent. Frontiers in<br>Plant Science, 0, 13, .                                                                             | 3.6               | 5             |
| 236 | The role of leaf wounding and an epigeal predator on caterpillar damage to tomato plants. Annals of<br>Applied Biology, 1999, 134, 137-141.                                                                | 2.5               | 4             |
| 237 | Do YellowhammersEmberiza citrinellaachieve higher breeding productivity in their introduced range than in their native range?. Bird Study, 2005, 52, 217-220.                                              | 1.0               | 4             |
| 238 | Harnessing Biodiversity to Improve Vineyard Sustainability. Outlooks on Pest Management, 2009, 20, 250-255.                                                                                                | 0.2               | 4             |
| 239 | Ratios rather than concentrations of nutritionally important elements may shape honey bee<br>preferences for â€ <sup>~</sup> dirty water'. Ecological Entomology, 2021, 46, 1236-1240.                     | 2.2               | 4             |
| 240 | Comments on the Literature concerning the Nearest-Neighbour Technique. Oikos, 1985, 44, 511.                                                                                                               | 2.7               | 3             |
| 241 | A computer-based advisory system for control of the summer pests of winter oilseed rape in Britain.<br>Crop Protection, 1992, 11, 561-571.                                                                 | 2.1               | 3             |
| 242 | Earthworm Populations and Association with Soil Parameters in Organic and Conventional Ley<br>Pastures. Biological Agriculture and Horticulture, 2005, 23, 143-159.                                        | 1.0               | 3             |
| 243 | Conservation, biodiversity, and integrated pest management. , 0, , 223-245.                                                                                                                                |                   | 3             |
| 244 | Evaluation of potential trap plant species for the wheat bug <i>Nysius huttoni</i> (Hemiptera:) Tj ETQq0 0 0 rgB                                                                                           | T /Oyerloc<br>1.3 | k 10 Tf 50 38 |
| 245 | Ecological and pest-management implications of sex differences in scarab landing patterns on grape vines. PeerJ, 2017, 5, e3213.                                                                           | 2.0               | 3             |
| 246 | Morphological basis for resistance in sugarcane to Pyrilla perpusilla Walker (Homoptera:) Tj ETQq0 0 0 rgBT /Ove                                                                                           | rlock 10 T<br>1.8 | f 50 302 Td ( |
| 247 | Susceptibility of kale cultivars to the wheat bug, Nysius huttoni (Hemiptera: Lygaeidae) in New Zealand.<br>New Zealand Journal of Agricultural Research, 2020, 63, 467-477.                               | 1.6               | 2             |
| 248 | Preferences of the wheat bug ( <i>Nysius huttoni</i> ) for particular growth stages of the<br>potential trap crop, alyssum ( <i>Lobularia maritima</i> ). New Zealand Plant Protection, 0,<br>72, 237-244. | 0.3               | 2             |
| 249 | A Perspective on the Consequences for Insect Herbivores and Their Natural Enemies When They Share<br>Plant Resources. ISRN Ecology, 2011, 2011, 1-6.                                                       | 1.0               | 2             |
| 250 | Grassland plant and invertebrate species richness increases from mowing are mediated by impacts on soil chemistry. Basic and Applied Ecology, 2022, 63, 152-163.                                           | 2.7               | 2             |
| 251 | Enhancing Ecosystem Services in Australasian Vineyards for Sustainability and Profit. , 2012, , 139-157.                                                                                                   |                   | 1             |
| 252 | Move on to a carbon currency standard. Nature, 2014, 506, 295-295.                                                                                                                                         | 27.8              | 1             |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Influence of black nightshade (Solanum nigrum) and hairy nightshade (Solanum physalifolium)<br>phenology on processed pea contamination. New Zealand Journal of Crop and Horticultural Science,<br>2014, 42, 38-49.     | 1.3 | 1         |
| 254 | Community dynamics can modify the direction of simulated warming effects on crop yield. PLoS ONE, 2018, 13, e0207796.                                                                                                   | 2.5 | 1         |
| 255 | Insect Herbivory Journal of Ecology, 1983, 71, 1030.                                                                                                                                                                    | 4.0 | 0         |
| 256 | Conservation of Biological Controls. , 2002, , .                                                                                                                                                                        |     | 0         |
| 257 | Insect Interactions with Other Pests (Weeds, Pathogens, Nematodes). , 2004, , 1-4.                                                                                                                                      |     | 0         |
| 258 | Assessing the potential of invertebrate natural enemies of insect pests inhabiting <i>Miscanthus</i> x<br><i>giganteus</i> shelterbelts in pasture. New Zealand Journal of Agricultural Research, 2023, 66,<br>259-269. | 1.6 | 0         |