Bertrand Séraphin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4869920/publications.pdf

Version: 2024-02-01

87888 123424 10,499 61 38 61 citations g-index h-index papers 62 62 62 9757 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A conserved motif in human BTG1 and BTG2 proteins mediates interaction with the poly(A) binding protein PABPC1 to stimulate mRNA deadenylation. RNA Biology, 2021, 18, 2450-2465.	3.1	10
2	Pby1 is a direct partner of the Dcp2 decapping enzyme. Nucleic Acids Research, 2020, 48, 6353-6366.	14.5	4
3	Mammalian Hbs1L deficiency causes congenital anomalies and developmental delay associated with Pelota depletion and 80S monosome accumulation. PLoS Genetics, 2019, 15, e1007917.	3.5	15
4	Architecture of the yeast Elongator complex. EMBO Reports, 2017, 18, 264-279.	4.5	75
5	Structures and Activities of the Elongator Complex and Its Cofactors. The Enzymes, 2017, 41, 117-149.	1.7	14
6	A unique surface on Pat1 C-terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5′–3â€2 mRNA exonuclease in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9493-E9501.	7.1	45
7	Structure of the active form of Dcp1–Dcp2 decapping enzyme bound to m7GDP and its Edc3 activator. Nature Structural and Molecular Biology, 2016, 23, 982-986.	8.2	48
8	Structural basis for tRNA modification by Elp3 from Dehalococcoides mccartyi. Nature Structural and Molecular Biology, 2016, 23, 794-802.	8.2	59
9	Acetylation-Dependent Control of Global Poly(A) RNA Degradation by CBP/p300 and HDAC1/2. Molecular Cell, 2016, 63, 927-938.	9.7	35
10	BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nature Communications, 2016, 7, 10811.	12.8	69
11	Gbp2 interacts with THO/TREX through a novel type of RRM domain. Nucleic Acids Research, 2016, 44, 437-448.	14.5	26
12	Structure of the Elongator cofactor complex Kti11/Kti13 provides insight into the role of Kti13 in Elongatorâ€dependent <scp>tRNA</scp> modification. FEBS Journal, 2015, 282, 819-833.	4.7	20
13	Loss of the scavenger mRNA decapping enzyme DCPS causes syndromic intellectual disability with neuromuscular defects. Human Molecular Genetics, 2015, 24, 3163-3171.	2.9	31
14	Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS. Nucleic Acids Research, 2015, 43, 482-492.	14.5	43
15	A Novel Protein-Protein Interaction in the RES (REtention and Splicing) Complex. Journal of Biological Chemistry, 2014, 289, 28640-28650.	3.4	19
16	Dom34-Hbs1 mediated dissociation of inactive 80S ribosomes promotes restart of translation after stress. EMBO Journal, 2014, 33, n/a-n/a.	7.8	74
17	The C-Terminal Domain from S. cerevisiae Pat1 Displays Two Conserved Regions Involved in Decapping Factor Recruitment. PLoS ONE, 2014, 9, e96828.	2.5	14
18	Rapid screening of yeast mutants with reporters identifies new splicing phenotypes. FEBS Journal, 2013, 280, 2712-2726.	4.7	6

#	Article	IF	CITATIONS
19	Intracellular ribonucleases involved in transcript processing and decay: Precision tools for RNA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 491-513.	1.9	52
20	Identification of the Rps28 binding motif from yeast Edc3 involved in the autoregulatory feedback loop controlling RPS28B mRNA decay. Nucleic Acids Research, 2013, 41, 9514-9523.	14.5	19
21	C2ORF29/CNOT11 and CNOT10 form a new module of the CCR4-NOT complex. RNA Biology, 2013, 10, 267-276.	3.1	66
22	Rbg1–Tma46 dimer structure reveals new functional domains and their role in polysome recruitment. Nucleic Acids Research, 2012, 40, 11100-11114.	14.5	23
23	Elongator. Transcription, 2012, 3, 273-276.	3.1	28
24	Architecture of the Nuclease Module of the Yeast Ccr4-Not Complex: the Not1-Caf1-Ccr4 Interaction. Molecular Cell, 2012, 48, 207-218.	9.7	131
25	Extensive Degradation of RNA Precursors by the Exosome in Wild-Type Cells. Molecular Cell, 2012, 48, 409-421.	9.7	218
26	Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nature Reviews Molecular Cell Biology, 2012, 13, 727-735.	37.0	99
27	The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nature Structural and Molecular Biology, 2012, 19, 314-320.	8.2	85
28	Cotranscriptional spliceosome assembly and splicing are independent of the Prp40p WW domain. Rna, 2011, 17, 2119-2129.	3. 5	28
29	The highly conserved eukaryotic DRG factors are required for efficient translation in a manner redundant with the putative RNA helicase Slh1. Nucleic Acids Research, 2011, 39, 2221-2233.	14.5	28
30	Dissection of Dom34–Hbs1 reveals independent functions in two RNA quality control pathways. Nature Structural and Molecular Biology, 2010, 17, 1446-1452.	8. 2	60
31	Twins take the job. EMBO Journal, 2010, 29, 2260-2261.	7.8	2
32	Catalytic Properties of the Eukaryotic Exosome. Advances in Experimental Medicine and Biology, 2010, 702, 63-78.	1.6	28
33	Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Nucleic Acids Research, 2009, 37, 129-143.	14.5	69
34	The BTG2 protein is a general activator of mRNA deadenylation. EMBO Journal, 2008, 27, 1039-1048.	7.8	100
35	Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature, 2008, 456, 993-996.	27.8	284
36	Exosome-mediated quality control: Substrate recruitment and molecular activity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 558-565.	1.9	67

#	Article	IF	CITATIONS
37	The U1 snRNP-associated factor Luc7p affects 5' splice site selection in yeast and human. Nucleic Acids Research, 2007, 35, 5874-5885.	14.5	44
38	RNA channelling by the archaeal exosome. EMBO Reports, 2007, 8, 470-476.	4.5	108
39	A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nature Structural and Molecular Biology, 2007, 14, 15-22.	8.2	381
40	Subunit architecture of multimeric complexes isolated directly from cells. EMBO Reports, 2006, 7, 605-610.	4.5	168
41	In Vivo Targeting of the Yeast Pop2 Deadenylase Subunit to Reporter Transcripts Induces Their Rapid Degradation and Generates New Decay Intermediates. Journal of Biological Chemistry, 2006, 281, 25940-25947.	3.4	31
42	Conservation of the deadenylase activity of proteins of the Caf1 family in human. Rna, 2005, 11, 487-494.	3.5	84
43	Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase. Cell, 2005, 121, 725-737.	28.9	764
44	Cytoplasmic foci are sites of mRNA decay in human cells. Journal of Cell Biology, 2004, 165, 31-40.	5. 2	553
45	Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO Journal, 2004, 23, 4847-4856.	7.8	139
46	â€~Cap-tabolism'. Trends in Biochemical Sciences, 2004, 29, 436-444.	7.5	97
47	Xâ€ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Reports, 2003, 4, 1150-1155.	4.5	104
48	DcpS can act in the 5'-3' mRNA decay pathway in addition to the 3'-5' pathway. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12081-12086.	7.1	75
49	Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO Journal, 2002, 21, 6915-6924.	7.8	398
50	The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods, 2001, 24, 218-229.	3.8	1,550
51	REF, an evolutionarily conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. Rna, 2000, 6, 638-650.	3.5	331
52	The Apoptosis-Promoting Factor TIA-1 Is a Regulator of Alternative Pre-mRNA Splicing. Molecular Cell, 2000, 6, 1089-1098.	9.7	252
53	Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly. Rna, 1999, 5, 819-831.	3.5	79
54	Genomic-scale quantitative analysis of yeast pre-mRNA splicing: Implications for splice-site recognition. Rna, 1999, 5, 1135-1137.	3.5	62

#	Article	IF	CITATIONS
55	A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology, 1999, 17, 1030-1032.	17.5	2,543
56	The yeast U2A′/U2B″ complex is required for pre-spliceosome formation. EMBO Journal, 1998, 17, 6348-6358.	7.8	49
57	New constructs and strategies for efficient PCR-based gene manipulations in yeast. Yeast, 1998, 14, 1139-1146.	1.7	86
58	A role for U2/U6 helix Ib in 5′ splice site selection. Rna, 1998, 4, 915-927.	3. 5	25
59	Small nuclear RNAs in messenger RNA and ribosomal RNA processing. FASEB Journal, 1993, 7, 47-53.	0.5	98
60	The HIT protein family: a new family of proteins present in prokaryotes, yeast and mammals. DNA Sequence, 1992, 3, 177-179.	0.7	82
61	Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Cell, 1989, 59, 349-358.	28.9	396