List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4869920/publications.pdf

Version: 2024-02-01

REDTRAND SÃORADHIN

#	Article	IF	CITATIONS
1	A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology, 1999, 17, 1030-1032.	17.5	2,543
2	The Tandem Affinity Purification (TAP) Method: A General Procedure of Protein Complex Purification. Methods, 2001, 24, 218-229.	3.8	1,550
3	Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase. Cell, 2005, 121, 725-737.	28.9	764
4	Cytoplasmic foci are sites of mRNA decay in human cells. Journal of Cell Biology, 2004, 165, 31-40.	5.2	553
5	Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO Journal, 2002, 21, 6915-6924.	7.8	398
6	Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Cell, 1989, 59, 349-358.	28.9	396
7	A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nature Structural and Molecular Biology, 2007, 14, 15-22.	8.2	381
8	REF, an evolutionarily conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. Rna, 2000, 6, 638-650.	3.5	331
9	Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature, 2008, 456, 993-996.	27.8	284
10	The Apoptosis-Promoting Factor TIA-1 Is a Regulator of Alternative Pre-mRNA Splicing. Molecular Cell, 2000, 6, 1089-1098.	9.7	252
11	Extensive Degradation of RNA Precursors by the Exosome in Wild-Type Cells. Molecular Cell, 2012, 48, 409-421.	9.7	218
12	Subunit architecture of multimeric complexes isolated directly from cells. EMBO Reports, 2006, 7, 605-610.	4.5	168
13	Proteomic analysis identifies a new complex required for nuclear pre-mRNA retention and splicing. EMBO Journal, 2004, 23, 4847-4856.	7.8	139
14	Architecture of the Nuclease Module of the Yeast Ccr4-Not Complex: the Not1-Caf1-Ccr4 Interaction. Molecular Cell, 2012, 48, 207-218.	9.7	131
15	RNA channelling by the archaeal exosome. EMBO Reports, 2007, 8, 470-476.	4.5	108
16	Xâ€ray structure and activity of the yeast Pop2 protein: a nuclease subunit of the mRNA deadenylase complex. EMBO Reports, 2003, 4, 1150-1155.	4.5	104
17	The BTG2 protein is a general activator of mRNA deadenylation. EMBO Journal, 2008, 27, 1039-1048.	7.8	100
18	Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nature Reviews Molecular Cell Biology, 2012, 13, 727-735.	37.0	99

#	Article	IF	CITATIONS
19	Small nuclear RNAs in messenger RNA and ribosomal RNA processing FASEB Journal, 1993, 7, 47-53.	0.5	98
20	â€~Cap-tabolism'. Trends in Biochemical Sciences, 2004, 29, 436-444.	7.5	97
21	New constructs and strategies for efficient PCR-based gene manipulations in yeast. Yeast, 1998, 14, 1139-1146.	1.7	86
22	The Elongator subcomplex Elp456 is a hexameric RecA-like ATPase. Nature Structural and Molecular Biology, 2012, 19, 314-320.	8.2	85
23	Conservation of the deadenylase activity of proteins of the Caf1 family in human. Rna, 2005, 11, 487-494.	3.5	84
24	The HIT protein family: a new family of proteins present in prokaryotes, yeast and mammals. DNA Sequence, 1992, 3, 177-179.	0.7	82
25	Transient interaction of BBP/ScSF1 and Mud2 with the splicing machinery affects the kinetics of spliceosome assembly. Rna, 1999, 5, 819-831.	3.5	79
26	DcpS can act in the 5'-3' mRNA decay pathway in addition to the 3'-5' pathway. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12081-12086.	7.1	75
27	Architecture of the yeast Elongator complex. EMBO Reports, 2017, 18, 264-279.	4.5	75
28	Dom34-Hbs1 mediated dissociation of inactive 80S ribosomes promotes restart of translation after stress. EMBO Journal, 2014, 33, n/a-n/a.	7.8	74
29	Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Nucleic Acids Research, 2009, 37, 129-143.	14.5	69
30	BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nature Communications, 2016, 7, 10811.	12.8	69
31	Exosome-mediated quality control: Substrate recruitment and molecular activity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 558-565.	1.9	67
32	C2ORF29/CNOT11 and CNOT10 form a new module of the CCR4-NOT complex. RNA Biology, 2013, 10, 267-276.	3.1	66
33	Genomic-scale quantitative analysis of yeast pre-mRNA splicing: Implications for splice-site recognition. Rna, 1999, 5, 1135-1137.	3.5	62
34	Dissection of Dom34–Hbs1 reveals independent functions in two RNA quality control pathways. Nature Structural and Molecular Biology, 2010, 17, 1446-1452.	8.2	60
35	Structural basis for tRNA modification by Elp3 from Dehalococcoides mccartyi. Nature Structural and Molecular Biology, 2016, 23, 794-802.	8.2	59
36	Intracellular ribonucleases involved in transcript processing and decay: Precision tools for RNA. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 491-513.	1.9	52

#	Article	IF	CITATIONS
37	The yeast U2A′/U2B″ complex is required for pre-spliceosome formation. EMBO Journal, 1998, 17, 6348-6358.	7.8	49
38	Structure of the active form of Dcp1–Dcp2 decapping enzyme bound to m7GDP and its Edc3 activator. Nature Structural and Molecular Biology, 2016, 23, 982-986.	8.2	48
39	A unique surface on Pat1 C-terminal domain directly interacts with Dcp2 decapping enzyme and Xrn1 5′–3′ mRNA exonuclease in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9493-E9501.	7.1	45
40	The U1 snRNP-associated factor Luc7p affects 5' splice site selection in yeast and human. Nucleic Acids Research, 2007, 35, 5874-5885.	14.5	44
41	Elimination of cap structures generated by mRNA decay involves the new scavenger mRNA decapping enzyme Aph1/FHIT together with DcpS. Nucleic Acids Research, 2015, 43, 482-492.	14.5	43
42	Acetylation-Dependent Control of Global Poly(A) RNA Degradation by CBP/p300 and HDAC1/2. Molecular Cell, 2016, 63, 927-938.	9.7	35
43	In Vivo Targeting of the Yeast Pop2 Deadenylase Subunit to Reporter Transcripts Induces Their Rapid Degradation and Generates New Decay Intermediates. Journal of Biological Chemistry, 2006, 281, 25940-25947.	3.4	31
44	Loss of the scavenger mRNA decapping enzyme DCPS causes syndromic intellectual disability with neuromuscular defects. Human Molecular Genetics, 2015, 24, 3163-3171.	2.9	31
45	Cotranscriptional spliceosome assembly and splicing are independent of the Prp40p WW domain. Rna, 2011, 17, 2119-2129.	3.5	28
46	The highly conserved eukaryotic DRG factors are required for efficient translation in a manner redundant with the putative RNA helicase Slh1. Nucleic Acids Research, 2011, 39, 2221-2233.	14.5	28
47	Elongator. Transcription, 2012, 3, 273-276.	3.1	28
48	Catalytic Properties of the Eukaryotic Exosome. Advances in Experimental Medicine and Biology, 2010, 702, 63-78.	1.6	28
49	Gbp2 interacts with THO/TREX through a novel type of RRM domain. Nucleic Acids Research, 2016, 44, 437-448.	14.5	26
50	A role for U2/U6 helix lb in $5\hat{a}\in^2$ splice site selection. Rna, 1998, 4, 915-927.	3.5	25
51	Rbg1–Tma46 dimer structure reveals new functional domains and their role in polysome recruitment. Nucleic Acids Research, 2012, 40, 11100-11114.	14.5	23
52	Structure of the Elongator cofactor complex Kti11/Kti13 provides insight into the role of Kti13 in Elongatorâ€dependent <scp>tRNA</scp> modification. FEBS Journal, 2015, 282, 819-833.	4.7	20
53	Identification of the Rps28 binding motif from yeast Edc3 involved in the autoregulatory feedback loop controlling RPS28B mRNA decay. Nucleic Acids Research, 2013, 41, 9514-9523.	14.5	19
54	A Novel Protein-Protein Interaction in the RES (REtention and Splicing) Complex. Journal of Biological Chemistry, 2014, 289, 28640-28650.	3.4	19

#	Article	IF	CITATIONS
55	Mammalian Hbs1L deficiency causes congenital anomalies and developmental delay associated with Pelota depletion and 80S monosome accumulation. PLoS Genetics, 2019, 15, e1007917.	3.5	15
56	Structures and Activities of the Elongator Complex and Its Cofactors. The Enzymes, 2017, 41, 117-149.	1.7	14
57	The C-Terminal Domain from S. cerevisiae Pat1 Displays Two Conserved Regions Involved in Decapping Factor Recruitment. PLoS ONE, 2014, 9, e96828.	2.5	14
58	A conserved motif in human BTG1 and BTG2 proteins mediates interaction with the poly(A) binding protein PABPC1 to stimulate mRNA deadenylation. RNA Biology, 2021, 18, 2450-2465.	3.1	10
59	Rapid screening of yeast mutants with reporters identifies new splicing phenotypes. FEBS Journal, 2013, 280, 2712-2726.	4.7	6
60	Pby1 is a direct partner of the Dcp2 decapping enzyme. Nucleic Acids Research, 2020, 48, 6353-6366.	14.5	4
61	Twins take the job. EMBO Journal, 2010, 29, 2260-2261.	7.8	2