
Sabine Hilfiker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4869727/publications.pdf Version: 2024-02-01

SARINE HILFIER

#	Article	IF	CITATIONS
1	Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson's disease. Acta Neuropathologica, 2022, 144, 81-106.	7.7	22
2	Pathogenic LRRK2 regulates centrosome cohesion via Rab10/RILPL1-mediated CDK5RAP2 displacement. IScience, 2022, 25, 104476.	4.1	13
3	Evaluation of Current Methods to Detect Cellular Leucine-Rich Repeat Kinase 2 (LRRK2) Kinase Activity. Journal of Parkinson's Disease, 2022, 12, 1423-1447.	2.8	8
4	The LRRK2 signaling network converges on a centriolar phospho-Rab10/RILPL1 complex to cause deficits in centrosome cohesion and cell polarization. Biology Open, 2022, 11, .	1.2	12
5	Rab GTPases in Parkinson's disease: a primer. Essays in Biochemistry, 2021, 65, 961-974.	4.7	11
6	Distinct Roles for RAB10 and RAB29 in Pathogenic LRRK2-Mediated Endolysosomal Trafficking Alterations. Cells, 2020, 9, 1719.	4.1	20
7	Kinase inhibition of G2019S-LRRK2 enhances autolysosome formation and function to reduce endogenous alpha-synuclein intracellular inclusions. Cell Death Discovery, 2020, 6, 45.	4.7	30
8	LRRK2-Related Parkinson's Disease Due to Altered Endolysosomal Biology With Variable Lewy Body Pathology: A Hypothesis. Frontiers in Neuroscience, 2020, 14, 556.	2.8	19
9	RAB8, RAB10 and RILPL1 contribute to both LRRK2 kinase–mediated centrosomal cohesion and ciliogenesis deficits. Human Molecular Genetics, 2019, 28, 3552-3568.	2.9	72
10	The G2019S variant of leucine-rich repeat kinase 2 (LRRK2) alters endolysosomal trafficking by impairing the function of the GTPase RAB8A. Journal of Biological Chemistry, 2019, 294, 4738-4758.	3.4	62
11	Centrosomal cohesion deficits as cellular biomarker in lymphoblastoid cell lines from LRRK2 Parkinson's disease patients. Biochemical Journal, 2019, 476, 2797-2813.	3.7	31
12	RAB7L1-Mediated Relocalization of LRRK2 to the Golgi Complex Causes Centrosomal Deficits via RAB8A. Frontiers in Molecular Neuroscience, 2018, 11, 417.	2.9	38
13	Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation. Molecular Neurodegeneration, 2018, 13, 3.	10.8	77
14	LRRK2: from kinase to GTPase to microtubules and back. Biochemical Society Transactions, 2017, 45, 141-146.	3.4	11
15	Cellular effects mediated by pathogenic LRRK2: homing in on Rab-mediated processes. Biochemical Society Transactions, 2017, 45, 147-154.	3.4	11
16	GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2. Human Molecular Genetics, 2017, 26, 2747-2767.	2.9	67
17	Biomonitorization of iron accumulation in the substantia nigra from Lewy body disease patients. Toxicology Reports, 2017, 4, 188-193.	3.3	20
18	LRRK2 and Parkinson's Disease: From Lack of Structure to Gain of Function. Current Protein and Peptide Science, 2017, 18, 677-686.	1.4	17

SABINE HILFIKER

#	Article	IF	CITATIONS
19	Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinsons Disease. Current Neuropharmacology, 2016, 14, 238-249.	2.9	52
20	Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy, 2016, 12, 1487-1506.	9.1	37
21	Two-Pore Channels and Parkinson's Disease: Where's the Link?. Messenger (Los Angeles, Calif: Print), 2016, 5, 67-75.	0.3	4
22	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
23	Alterations in late endocytic trafficking related to the pathobiology of LRRK2-linked Parkinson's disease. Biochemical Society Transactions, 2015, 43, 390-395.	3.4	28
24	Upstream deregulation of calcium signaling in Parkinsonââ,¬â"¢s disease. Frontiers in Molecular Neuroscience, 2014, 7, 53.	2.9	34
25	In vivo potential antidiabetic activity of a novel zinc coordination compound based on 3-carboxy-pyrazole. Journal of Inorganic Biochemistry, 2014, 131, 64-67.	3.5	32
26	LRRK2 delays degradative receptor trafficking by impeding late endosomal budding through decreasing Rab7 activity. Human Molecular Genetics, 2014, 23, 6779-6796.	2.9	139
27	LRRK2 as a modulator of lysosomal calcium homeostasis with downstream effects on autophagy. Autophagy, 2012, 8, 692-693.	9.1	42
28	Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Human Molecular Genetics, 2012, 21, 511-525.	2.9	285
29	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
30	A link between LRRK2, autophagy and NAADP-mediated endolysosomal calcium signalling. Biochemical Society Transactions, 2012, 40, 1140-1146.	3.4	26
31	A Link between Autophagy and the Pathophysiology of LRRK2 in Parkinson's Disease. Parkinson's Disease, Parkinson's Disease, 2012, 2012, 1-9.	1.1	21
32	Sexy regulation of SNARE-mediated membrane fusion by local lipid metabolism. Frontiers in Synaptic Neuroscience, 2010, 2, 3.	2.5	0
33	Transmembrane-domain determinants for SNARE-mediated membrane fusion. Journal of Cell Science, 2010, 123, 2473-2480.	2.0	46
34	Combined kinase inhibition modulates parkin inactivation. Human Molecular Genetics, 2009, 18, 809-23.	2.9	43
35	Hydroxytyrosol increases norepinephrine transporter function in pheochromocytoma cells. Nuclear Medicine and Biology, 2008, 35, 801-804.	0.6	8
36	A Role for Soluble <i>N</i> -Ethylmaleimide-sensitive Factor Attachment Protein Receptor Complex Dimerization during Neurosecretion. Molecular Biology of the Cell, 2008, 19, 3379-3389.	2.1	12

SABINE HILFIKER

#	Article	IF	CITATIONS
37	Mechanistic insight into the dominant mode of the Parkinson's disease-associated G2019S LRRK2 mutation. Human Molecular Genetics, 2007, 16, 2031-2039.	2.9	132
38	A delayed response enhancement during hippocampal presynaptic plasticity in mice. Journal of Physiology, 2007, 583, 129-143.	2.9	33
39	Vesicle pools and synapsins: New insights into old enigmas. Brain Cell Biology, 2007, 35, 107-115.	3.2	67
40	Structural Domains Involved in the Regulation of Transmitter Release by Synapsins. Journal of Neuroscience, 2005, 25, 2658-2669.	3.6	134
41	Phosphatidylinositol 4-OH Kinase Is a Downstream Target of Neuronal Calcium Sensor-1 in Enhancing Exocytosis in Neuroendocrine Cells. Journal of Biological Chemistry, 2003, 278, 6075-6084.	3.4	59
42	Ca2+ Stores and Ca2+ Entry Differentially Contribute to the Release of IL-1β and IL-1α from Murine Macrophages. Journal of Immunology, 2003, 170, 3029-3036.	0.8	139
43	Neuronal calcium sensor 1 and phosphatidylinositol 4-OH kinase Î ² interact in neuronal cells and are translocated to membranes during nucleotide-evoked exocytosis. Journal of Cell Science, 2002, 115, 3909-3922.	2.0	55
44	Identification of synapsin I peptides that insert into lipid membranes. Biochemical Journal, 2001, 354, 57.	3.7	34
45	Identification of synapsin I peptides that insert into lipid membranes. Biochemical Journal, 2001, 354, 57-66.	3.7	61
46	Regulation of Synaptotagmin I Phosphorylation by Multiple Protein Kinases. Journal of Neurochemistry, 2001, 73, 921-932.	3.9	89
47	Tonically active protein kinase A regulates neurotransmitter release at the squid giant synapse. Journal of Physiology, 2001, 531, 141-146.	2.9	41
48	Decrease in phorbol ester-induced potentiation of noradrenaline release in synapsin l-deficient mice. , 2000, 36, 114-119.		4
49	Proteins involved in synaptic vesicle trafficking. Journal of Physiology, 1999, 520, 33-41.	2.9	65
50	Regulation of synaptic vesicle fusion by protein kinase C. Journal of Physiology, 1999, 515, 1-1.	2.9	30
51	Coupling calcium to SNARE–mediated synaptic vesicle fusion. Nature Neuroscience, 1999, 2, 104-106.	14.8	27
52	Molecular evolution of the synapsin gene family. , 1999, 285, 360-377.		105
53	Synapsins as regulators of neurotransmitter release. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 269-279.	4.0	478
54	Molecular evolution of the synapsin gene family. The Journal of Experimental Zoology, 1999, 285, 360-377.	1.4	2

#	Article	IF	CITATIONS
55	Two sites of action for synapsin domain E in regulating neurotransmitter release. Nature Neuroscience, 1998, 1, 29-35.	14.8	154