Ansuman T Satpathy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4869603/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GPC2-CAR TÂcells tuned for low antigen density mediate potent activity against neuroblastoma without toxicity. Cancer Cell, 2022, 40, 53-69.e9.	16.8	60
2	Bystander T cells in cancer immunology and therapy. Nature Cancer, 2022, 3, 143-155.	13.2	47
3	Mitochondrial variant enrichment from high-throughput single-cell RNA sequencing resolves clonal populations. Nature Biotechnology, 2022, 40, 1030-1034.	17.5	45
4	KIR ⁺ CD8 ⁺ T cells suppress pathogenic T cells and are active in autoimmune diseases and COVID-19. Science, 2022, 376, eabi9591.	12.6	113
5	Lymph node colonization induces tumor-immune tolerance to promote distant metastasis. Cell, 2022, 185, 1924-1942.e23.	28.9	111
6	Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell, 2022, 185, 1745-1763.e22.	28.9	88
7	Spatiotemporal co-dependency between macrophages and exhausted CD8+ TÂcells in cancer. Cancer Cell, 2022, 40, 624-638.e9.	16.8	113
8	Epigenetic regulation of T cell exhaustion. Nature Immunology, 2022, 23, 848-860.	14.5	82
9	BCL6-dependent TCF-1+ progenitor cells maintain effector and helper CD4+ TÂcell responses to persistent antigen. Immunity, 2022, 55, 1200-1215.e6.	14.3	30
10	Genome-wide CRISPR screens of TÂcell exhaustion identify chromatin remodeling factors that limit TÂcell persistence. Cancer Cell, 2022, 40, 768-786.e7.	16.8	104
11	Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nature Cancer, 2022, 3, 976-993.	13.2	23
12	Profiling Chromatin Accessibility at Single-cell Resolution. Genomics, Proteomics and Bioinformatics, 2021, 19, 172-190.	6.9	18
13	Surface Proteomics Reveals CD72 as a Target for <i>In Vitro</i> –Evolved Nanobody-Based CAR-T Cells in <i>KMT2A/MLL1</i> -Rearranged B-ALL. Cancer Discovery, 2021, 11, 2032-2049.	9.4	37
14	B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell, 2021, 184, 1790-1803.e17.	28.9	105
15	Discovery and functional interrogation of SARS-CoV-2 RNA-host protein interactions. Cell, 2021, 184, 2394-2411.e16.	28.9	141
16	Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science, 2021, 372, .	12.6	297
17	Recruiting T cells in cancer immunotherapy. Science, 2021, 372, 130-131.	12.6	56
18	Interrogating immune cells and cancer with CRISPR-Cas9. Trends in Immunology, 2021, 42, 432-446.	6.8	13

#	Article	IF	CITATIONS
19	Repertoire Remodeling through CD4+ T-cell Depletion. Cancer Immunology Research, 2021, 9, 601-601.	3.4	1
20	ldentification of a T-bethi Quiescent Exhausted CD8 T Cell Subpopulation That Can Differentiate into TIM3+CX3CR1+ Effectors and Memory-like Cells. Journal of Immunology, 2021, 206, 2924-2936.	0.8	17
21	Charting a shared epigenetic pathway to CD8+ T cell dysfunction in infection and cancer. Molecular Cell, 2021, 81, 2272-2274.	9.7	0
22	Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics. Cell Reports, 2021, 35, 109305.	6.4	38
23	A human mutation in STAT3 promotes type 1 diabetes through a defect in CD8+ T cell tolerance. Journal of Experimental Medicine, 2021, 218, .	8.5	32
24	Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
25	Abstract 1548: Potent activity of CAR T cells targeting the oncofetal protein GPC2 engineered to recognize low antigen density in neuroblastoma. , 2021, , .		0
26	Differential usage of transcriptional repressor Zeb2 enhancers distinguishes adult and embryonic hematopoiesis. Immunity, 2021, 54, 1417-1432.e7.	14.3	17
27	High-throughput and single-cell T cell receptor sequencing technologies. Nature Methods, 2021, 18, 881-892.	19.0	133
28	NOT-Gated CD93 CAR T Cells Effectively Target AML with Minimized Endothelial Cross-Reactivity. Blood Cancer Discovery, 2021, 2, 648-665.	5.0	37
29	Archetypes of checkpoint-responsive immunity. Trends in Immunology, 2021, 42, 960-974.	6.8	5
30	Combined presentation and immunogenicity analysis reveals a recurrent RAS.Q61K neoantigen in melanoma. Journal of Clinical Investigation, 2021, 131, .	8.2	15
31	Single-cell multiomics defines tolerogenic extrathymic Aire-expressing populations with unique homology to thymic epithelium. Science Immunology, 2021, 6, eabl5053.	11.9	39
32	ecDNA hubs drive cooperative intermolecular oncogene expression. Nature, 2021, 600, 731-736.	27.8	123
33	Clonal Hematopoiesis is Associated with Reduced Risk of Alzheimer's Disease. Blood, 2021, 138, 5-5.	1.4	15
34	Charting the tumor antigen maps drawn by single-cell genomics. Cancer Cell, 2021, 39, 1553-1557.	16.8	9
35	Toward a better understanding of TÂcells in cancer. Cancer Cell, 2021, 39, 1549-1552.	16.8	21
36	Tracking the immune response with single-cell genomics. Vaccine, 2020, 38, 4487-4490.	3.8	7

#	Article	lF	CITATIONS
37	Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies. Cell, 2020, 183, 126-142.e17.	28.9	269
38	Chromatin Landscape Underpinning Human Dendritic Cell Heterogeneity. Cell Reports, 2020, 32, 108180.	6.4	18
39	Affinity-Restricted Memory B Cells Dominate Recall Responses to Heterologous Flaviviruses. Immunity, 2020, 53, 1078-1094.e7.	14.3	76
40	An old BATF's new T-ricks. Nature Immunology, 2020, 21, 1309-1310.	14.5	0
41	Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nature Immunology, 2020, 21, 1022-1033.	14.5	227
42	Chromatin accessibility landscapes of skin cells in systemic sclerosis nominate dendritic cells in disease pathogenesis. Nature Communications, 2020, 11, 5843.	12.8	22
43	Human B Cell Clonal Expansion and Convergent Antibody Responses to SARS-CoV-2. Cell Host and Microbe, 2020, 28, 516-525.e5.	11.0	219
44	CRISPR-engineered T cells in patients with refractory cancer. Science, 2020, 367, .	12.6	872
45	An Nfil3–Zeb2–ld2 pathway imposes Irf8 enhancer switching during cDC1 development. Nature Immunology, 2019, 20, 1174-1185.	14.5	80
46	Cryptic activation of an Irf8 enhancer governs cDC1 fate specification. Nature Immunology, 2019, 20, 1161-1173.	14.5	100
47	Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nature Biotechnology, 2019, 37, 925-936.	17.5	622
48	Clonal replacement of tumor-specific T cells following PD-1 blockade. Nature Medicine, 2019, 25, 1251-1259.	30.7	974
49	GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nature Communications, 2019, 10, 4955.	12.8	100
50	A Mutation in the Transcription Factor Foxp3 Drives T Helper 2 Effector Function in Regulatory T Cells. Immunity, 2019, 50, 362-377.e6.	14.3	72
51	Enhancer Connectome Nominates Target GenesÂof Inherited Risk Variants from Inflammatory Skin Disorders. Journal of Investigative Dermatology, 2019, 139, 605-614.	0.7	21
52	HiChIRP reveals RNA-associated chromosome conformation. Nature Methods, 2019, 16, 489-492.	19.0	70
53	Interrogation of human hematopoiesis at single-cell and single-variant resolution. Nature Genetics, 2019, 51, 683-693.	21.4	147
54	A Subset of Type I Conventional Dendritic Cells Controls Cutaneous Bacterial Infections through VEGF1±-Mediated Recruitment of Neutrophils. Immunity, 2019, 50, 1069-1083.e8.	14.3	50

#	Article	IF	CITATIONS
55	c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature, 2019, 576, 293-300.	27.8	480
56	Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks. Cell, 2019, 176, 361-376.e17.	28.9	215
57	Pembrolizumab for advanced basal cell carcinoma: An investigator-initiated, proof-of-concept study. Journal of the American Academy of Dermatology, 2019, 80, 564-566.	1.2	83
58	Transcript-indexed ATAC-seq for precision immune profiling. Nature Medicine, 2018, 24, 580-590.	30.7	124
59	Notch2-dependent DC2s mediate splenic germinal center responses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10726-10731.	7.1	53
60	The chromatin accessibility landscape of primary human cancers. Science, 2018, 362, .	12.6	781
61	Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7723-7728.	7.1	156
62	Expression of the transcription factor ZBTB46 distinguishes human histiocytic disorders of classical dendritic cell origin. Modern Pathology, 2018, 31, 1479-1486.	5.5	14
63	Dissecting the Regulation of Human Hematopoiesis at Single-Cell and Single-Variant Resolution. Blood, 2018, 132, 531-531.	1.4	0
64	Chromatin Accessibility Landscape of Cutaneous T Cell Lymphoma and Dynamic Response to HDAC Inhibitors. Cancer Cell, 2017, 32, 27-41.e4.	16.8	136
65	Revisiting the specificity of the MHC class II transactivator CIITA in classical murine dendritic cells in vivo. European Journal of Immunology, 2017, 47, 1317-1323.	2.9	9
66	Cutting Edge: Origins, Recruitment, and Regulation of CD11c+ Cells in Inflamed Islets of Autoimmune Diabetes Mice. Journal of Immunology, 2017, 199, 27-32.	0.8	24
67	Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nature Genetics, 2017, 49, 1602-1612.	21.4	419
68	Gene regulation in the immune system by long noncoding RNAs. Nature Immunology, 2017, 18, 962-972.	14.5	611
69	Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature, 2017, 549, 111-115.	27.8	247
70	An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nature Methods, 2017, 14, 959-962.	19.0	1,653
71	ATAC-see reveals the accessible genome by transposase-mediated imaging and sequencing. Nature Methods, 2016, 13, 1013-1020.	19.0	199
72	A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation. Cell, 2016, 165, 1672-1685.	28.9	399

#	Article	IF	CITATIONS
73	Cellular morphology of BRAF V600E-positive Langerhans cell histiocytosis. Blood, 2015, 126, 1857-1857.	1.4	4
74	Long Noncoding RNA in Hematopoiesis and Immunity. Immunity, 2015, 42, 792-804.	14.3	161
75	Heme-Mediated SPI-C Induction Promotes Monocyte Differentiation into Iron-Recycling Macrophages. Cell, 2014, 156, 1223-1234.	28.9	359
76	L-Myc expression by dendritic cells is required for optimal T-cell priming. Nature, 2014, 507, 243-247.	27.8	87
77	Embryonic and Adult-Derived Resident Cardiac Macrophages Are Maintained through Distinct Mechanisms at Steady State and during Inflammation. Immunity, 2014, 40, 91-104.	14.3	1,120
78	Runx1 and CbfÎ ² regulate the development of Flt3+ dendritic cell progenitors and restrict myeloproliferative disorder. Blood, 2014, 123, 2968-2977.	1.4	42
79	Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nature Immunology, 2013, 14, 937-948.	14.5	368
80	Extrathymic Aire-Expressing Cells Are a Distinct Bone Marrow-Derived Population that Induce Functional Inactivation of CD4+ T Cells. Immunity, 2013, 39, 560-572.	14.3	133
81	Bcl11a Controls Flt3 Expression in Early Hematopoietic Progenitors and Is Required for pDC Development In Vivo. PLoS ONE, 2013, 8, e64800.	2.5	42
82	Cross-dressed CD8α ⁺ /CD103 ⁺ dendritic cells prime CD8 ⁺ T cells following vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12716-12721.	7.1	63
83	IRF-8 extinguishes neutrophil production and promotes dendritic cell lineage commitment in both myeloid and lymphoid mouse progenitors. Blood, 2012, 119, 2003-2012.	1.4	144
84	Re(de)fining the dendritic cell lineage. Nature Immunology, 2012, 13, 1145-1154.	14.5	385
85	Ly6Chi Monocytes in the Inflamed Colon Give Rise to Proinflammatory Effector Cells and Migratory Antigen-Presenting Cells. Immunity, 2012, 37, 1076-1090.	14.3	613
86	Compensatory dendritic cell development mediated by BATF–IRF interactions. Nature, 2012, 490, 502-507.	27.8	367
87	<i>Zbtb46</i> expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. Journal of Experimental Medicine, 2012, 209, 1135-1152.	8.5	515
88	Transcription factor networks in dendritic cell development. Seminars in Immunology, 2011, 23, 388-397.	5.6	59
89	Targeting of B and T lymphocyte associated (BTLA) prevents graft-versus-host disease without global immunosuppression. Journal of Experimental Medicine, 2010, 207, 2551-2559.	8.5	55
90	Enhanced thymic selection of FoxP3 ⁺ regulatory T cells in the NOD mouse model of autoimmune diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18181-18186.	7.1	73

#	Article	IF	CITATIONS
91	Cytokines in Type 2 Diabetes. Vitamins and Hormones, 2006, 74, 405-441.	1.7	10
92	IL-1β-Mediated Innate Immunity Is Amplified in the <i>db/db</i> Mouse Model of Type 2 Diabetes. Journal of Immunology, 2005, 174, 4991-4997.	0.8	82
93	HiChIRP: RNA-centric chromatin conformation. Protocol Exchange, 0, , .	0.3	1