Renaud Blaise Jolivet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4869372/publications.pdf

Version: 2024-02-01

30 papers 3,402 citations

331670 21 h-index 28 g-index

38 all docs 38 docs citations

38 times ranked 5117 citing authors

#	Article	IF	CITATIONS
1	Synaptic Energy Use and Supply. Neuron, 2012, 75, 762-777.	8.1	1,209
2	<i>In Vivo</i> Evidence for Lactate as a Neuronal Energy Source. Journal of Neuroscience, 2011, 31, 7477-7485.	3 . 6	353
3	Microglial Ramification, Surveillance, and Interleukin-1β Release Are Regulated by the Two-Pore Domain K+ Channel THIK-1. Neuron, 2018, 97, 299-312.e6.	8.1	323
4	Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of Computational Neuroscience, 2006, 21, 35-49.	1.0	246
5	Generalized Integrate-and-Fire Models of Neuronal Activity Approximate Spike Trains of a Detailed Model to a High Degree of Accuracy. Journal of Neurophysiology, 2004, 92, 959-976.	1.8	233
6	A benchmark test for a quantitative assessment of simple neuron models. Journal of Neuroscience Methods, 2008, 169, 417-424.	2.5	121
7	The quantitative single-neuron modeling competition. Biological Cybernetics, 2008, 99, 417-426.	1.3	103
8	Multi-timescale Modeling of Activity-Dependent Metabolic Coupling in the Neuron-Glia-Vasculature Ensemble. PLoS Computational Biology, 2015, 11, e1004036.	3.2	86
9	Deciphering neuron-glia compartmentalization in cortical energy metabolism. Frontiers in Neuroenergetics, 2009, 1 , 4 .	5. 3	73
10	Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Progress in Neurobiology, 2019, 175, 35-53.	5.7	72
11	Comment on Recent Modeling Studies of Astrocyte–Neuron Metabolic Interactions. Journal of Cerebral Blood Flow and Metabolism, 2010, 30, 1982-1986.	4. 3	70
12	Energy-Efficient Information Transfer by Visual Pathway Synapses. Current Biology, 2015, 25, 3151-3160.	3.9	60
13	Harnessing Microglia and Macrophages for the Treatment of Glioblastoma. Frontiers in Pharmacology, 2019, 10, 506.	3.5	55
14	Periaxonal and nodal plasticities modulate action potential conduction in the adult mouse brain. Cell Reports, 2021, 34, 108641.	6.4	54
15	Predicting neuronal activity with simple models of the threshold type: Adaptive Exponential Integrate-and-Fire model with two compartments. Neurocomputing, 2007, 70, 1668-1673.	5.9	53
16	Multimodal Imaging in Rats Reveals Impaired Neurovascular Coupling in Sustained Hypertension. Stroke, 2013, 44, 1957-1964.	2.0	50
17	Metabotropic glutamate receptor mGluR5 is not involved in the early hemodynamic response. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, e1-e10.	4.3	39
18	Non-signalling energy use in the developing rat brain. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 951-966.	4.3	37

#	Article	IF	CITATIONS
19	Improved <i>in vivo</i> twoâ€photon imaging after blood replacement by perfluorocarbon. Journal of Physiology, 2009, 587, 3153-3158.	2.9	32
20	The Spike Response Model: A Framework to Predict Neuronal Spike Trains. Lecture Notes in Computer Science, 2003, , 846-853.	1.3	26
21	A Process for Digitizing and Simulating Biologically Realistic Oligocellular Networks Demonstrated for the Neuro-Glio-Vascular Ensemble. Frontiers in Neuroscience, 2018, 12, 664.	2.8	25
22	Energy-efficient information transfer at thalamocortical synapses. PLoS Computational Biology, 2019, 15, e1007226.	3.2	22
23	Predicting spike times of a detailed conductance-based neuron model driven by stochastic spike arrival. Journal of Physiology (Paris), 2004, 98, 442-451.	2.1	13
24	Special issue on quantitative neuron modeling. Biological Cybernetics, 2008, 99, 237-239.	1.3	12
25	Energy use constrains brain information processing. , 2017, , .		9
26	Two-photon microscopy with double-circle trajectories for in vivo cerebral blood flow measurements. Experiments in Fluids, 2013, 54, 1.	2.4	7
27	Analysis of Signaling Mechanisms Regulating Microglial Process Movement. Methods in Molecular Biology, 2019, 2034, 191-205.	0.9	5
28	High-accuracy liquid-sample <mml:math altimg="si42.svg" display="inline" id="d1e101" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>l²</mml:mi></mml:math> -NMR setup at ISOLDE. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1020, 165862.	1.6	4
29	Magnetic Moments of Short-Lived Nuclei with Part-per-Million Accuracy: Toward Novel Applications of \hat{I}^2 -Detected NMR in Physics, Chemistry, and Biology. Physical Review X, 2020, 10, .	8.9	2
30	Modelling Neuromodulated Information Flow and Energetic Consumption at Thalamic Relay Synapses. Lecture Notes in Computer Science, 2020, , 649-658.	1.3	0