Chaitanya Kumar Suddapalli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4868187/publications.pdf

Version: 2024-02-01

147 papers 2,166 citations

236925 25 h-index 265206 42 g-index

147 all docs

147 docs citations

times ranked

147

1209 citing authors

#	Article	IF	CITATIONS
1	Tunable, high-power, high-order optical vortex beam generation in the mid-infrared. Optics Express, 2022, 30, 1195.	3.4	11
2	Imaging inspired characterization of single photons carrying orbital angular momentum. AVS Quantum Science, 2022, 4, .	4.9	3
3	Yb-fiber-pumped high-average-power picosecond optical parametric oscillator tunable across 1.3â~1.5â€Î⅓m. Optics Express, 2022, 30, 16340.	3.4	5
4	Ultrashort pulse generation from continuous-wave driven degenerate optical parametric oscillators. IEEE Journal of Selected Topics in Quantum Electronics, 2022, , 1-8.	2.9	2
5	Tunable vortex beam generation using an optical parametric oscillator with an antiresonant-ring interferometer. Optics Letters, 2021, 46, 3235.	3.3	3
6	High-Power, Continuous-Wave, Fiber-Pumped Difference-Frequency-Generation at 2.26 $\hat{1}\frac{1}{4}$ m. IEEE Photonics Technology Letters, 2021, 33, 627-630.	2.5	3
7	High-power continuous-wave mid-infrared difference-frequency generation in the presence of thermal effects. Journal of the Optical Society of America B: Optical Physics, 2021, 38, B14.	2.1	2
8	Tunable multi-structured-beam optical parametric oscillator., 2021,,.		0
9	Broadly tunable, intracavity injection-seeded, hybrid optical parametric oscillator. Optics Letters, 2021, 46, 4502.	3.3	2
10	Green-pumped continuous-wave parametric oscillator based on fanout–grating MgO:PPLN: publisher's note. Optics Letters, 2021, 46, 41.	3.3	0
11	Continuous-wave high-power fiber-based difference-frequency-generation at 2.26 μm., 2021,,.		0
12	Continuous-wave green-pumped optical parametric oscillator based on fanout MgO:PPLN. , 2020, , .		0
13	Multi-structured-beam optical parametric oscillator. Optics Express, 2020, 28, 21650.	3.4	4
14	Performance studies of high-average-power picosecond optical parametric generation and amplification in MgO:PPLN at 80â€MHz. Optics Express, 2020, 28, 39189.	3.4	5
15	Fiber-laser-pumped high-repetition-rate picosecond optical parametric generation and amplification in MgO:PPLN. Optics Letters, 2020, 45, 6126.	3.3	10
16	Green-pumped continuous-wave parametric oscillator based on fanout–grating MgO:PPLN. Optics Letters, 2020, 45, 6486.	3.3	10
17	Widely tunable femtosecond soliton generation in a fiber-feedback optical parametric oscillator. Optica, 2020, 7, 426.	9.3	21
18	Yb-fiber-pumped MgO:PPLN-based picosecond optical parametric oscillator tunable across 1.3-1.5 pm. , 2020, , .		0

#	Article	IF	Citations
19	Rapidly Tunable Continuous-wave Green-pumped Optical Parametric Oscillator Based on Fanout MgO:PPLN. , 2020, , .		O
20	Phase-locked picosecond optical parametric oscillator. Optics Letters, 2020, 45, 3981.	3.3	4
21	Tunable vector-vortex beam optical parametric oscillator. Scientific Reports, 2019, 9, 9578.	3.3	10
22	Enhancement of efficiency in femtosecond optical parametric oscillators using group-velocity-matching in long nonlinear crystals. APL Photonics, 2019, 4, 050801.	5.7	6
23	Pump Wavelength-Tuned Femtosecond Optical Parametric Oscillator across 3.6–8 μm Based on Orientation Patterned Gallium Phosphide. , 2019, , .		0
24	Yb-fiber-pumped, high-beam-quality, idler-resonant mid-infrared picosecond optical parametric oscillator. Optics Express, 2019, 27, 25436.	3.4	18
25	Femtosecond optical parametric oscillator continuously tunable across 36–8  μm based on orientation-patterned gallium phosphide. Optics Letters, 2019, 44, 4570.	3.3	14
26	Tunable ultraviolet vortex source based on a continuous-wave optical parametric oscillator. Optics Letters, 2019, 44, 4694.	3.3	9
27	Green-pumped optical parametric oscillator based on fan-out grating periodically-poled MgO-doped congruent LiTaO ₃ . Optics Letters, 2019, 44, 5796.	3.3	10
28	Video-rate, mid-infrared hyperspectral upconversion imaging. Optica, 2019, 6, 702.	9.3	61
29	Mid-infrared upconversion imaging using femtosecond pulses. Photonics Research, 2019, 7, 783.	7.0	22
30	Tunable multi-structured-beam optical parametric oscillator., 2019,,.		0
31	Single-Stage Ti:Sapphire-Pumped Deep-Infrared Optical Parametric Oscillator Based on CdSiP2. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-9.	2.9	2
32	Singly-resonant pulsed optical parametric oscillator based on orientation-patterned gallium phosphide. Optics Letters, 2018, 43, 2454.	3.3	3
33	Performance characterization of mid-infrared difference-frequency-generation in orientation-patterned gallium phosphide. Optical Materials Express, 2018, 8, 555.	3.0	8
34	Yb-fiber-pumped mid-infrared picosecond optical parametric oscillator tunable across 6.2–6.7ÂÂμm. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	2
35	Critically phase-matched Ti:sapphire-laser-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP ₂ . Optics Letters, 2018, 43, 1507.	3.3	11
36	Orbital angular momentum exchange in a picosecond optical parametric oscillator. Optics Letters, 2018, 43, 3606.	3.3	15

#	Article	IF	CITATIONS
37	Generation of vector vortex beam from doubly-resonant nanosecond optical parametric oscillator. , 2018, , .		1
38	Tunable high-average-power optical parametric oscillators near 2  μm. Journal of the Optical Society of America B: Optical Physics, 2018, 35, C57.	2.1	10
39	Vector vortex beam generation from a doubly-resonant nanosecond optical parametric oscillator. , 2018, , .		0
40	Continuous-wave, singly-resonant optical parametric oscillator source of vortex beams tunable in the ultraviolet. , $2018, , .$		0
41	Performance characterization of mid-infrared difference frequency generation in orientation-patterned gallium phosphide. , 2018, , .		O
42	Advances in ultrafast optical parametric oscillators based on CdSiP2., 2018, , .		1
43	Picosecond difference-frequency-generation in orientation-patterned gallium phosphide. Optics Express, 2017, 25, 19595.	3.4	8
44	Controlled switching of orbital angular momentum in an optical parametric oscillator. Optica, 2017, 4, 349.	9.3	54
45	High-repetition-rate, deep-infrared, picosecond optical parametric oscillator based on CdSiP_2. Optics Letters, 2017, 42, 3606.	3.3	12
46	Yb-fiber-green-pumped, widely tunable, room-temperature picosecond optical parametric oscillator based on fan-out PPKTP., 2017,,.		0
47	Nanosecond difference-frequency generation in orientation-patterned gallium phosphide. Optics Letters, 2017, 42, 2193.	3.3	10
48	Optical parametric generation in orientation-patterned gallium phosphide. Optics Letters, 2017, 42, 3694.	3.3	7
49	Single-Stage Ti:sapphire-Pumped Deep-Infrared Femtosecond Optical Parametric Oscillator based on CdSiP2., 2017,,.		1
50	Mid-Infrared Picosecond Difference Frequency Generation in Orientation-Patterned Gallium Phosphide., 2017,,.		0
51	Frequency Comb Based on Continuous-Wave Optical Parametric Oscillator. , 2017, , .		O
52	High-repetition-rate Picosecond Deep-infrared Optical Parametric Oscillator Based on CdSiP2., 2017,,.		0
53	2.9 W picosecond ultraviolet source at 266 nm based on walk-off compensated single-pass fourth harmonic generation in \hat{l}^2 -BaB2O4. , 2016, , .		О
54	Ti:sapphire-pumped deep-infrared femtosecond optical parametric oscillator based on CdSiP_2. Optics Letters, 2016, 41, 1708.	3.3	25

#	Article	IF	Citations
55	Frequency-Doubling of Femtosecond Pulses in "Thick―Nonlinear Crystals With Different Temporal and Spatial Walk-Off Parameters. IEEE Photonics Journal, 2016, 8, 1-13.	2.0	7
56	Pump-tuned deep-infrared femtosecond optical parametric oscillator across 6–7  μm based on CdSiP Optics Letters, 2016, 41, 3355.	-3 :3	26
57	Ybâ€fiberâ€based, highâ€averageâ€power, highâ€repetitionâ€rate, picosecond source at 2.1 µm. Laser and Phot Reviews, 2016, 10, 970-977.	tonics 8.7	13
58	Ultrafast Airy beam optical parametric oscillator. Scientific Reports, 2016, 6, 30701.	3.3	5
59	Ultrafast optical vortex beam generation in the ultraviolet. Optics Letters, 2016, 41, 2715.	3.3	36
60	Fiber-laser-based, green-pumped, picosecond optical parametric oscillator using fan-out grating PPKTP. Optics Letters, 2016, 41, 52.	3.3	23
61	Advances in ultrafast optical parametric sources for the mid-infrared based on CdSiP_2. Journal of the Optical Society of America B: Optical Physics, 2016, 33, D44.	2.1	40
62	Fiber-laser-based, high-repetition-rate, picosecond ultraviolet source tunable across 329–348  nm. Optics Letters, 2016, 41, 4799.	3.3	2
63	2.1 Âμm Picosecond Source Generating 7 W at 80 MHz. , 2016, , .		0
64	Picosecond mid-infrared optical parametric oscillator based on cylindrical MgO:PPLN., 2016,,.		0
65	Rapidly pump-tunable, mid-infrared femtosecond optical parametric oscillator in the 6-7 $\hat{A}\mu m$ based on CdSiP2. , 2016, , .		1
66	Angle-tuned quasi-phase-matched mid-infrared optical parametric oscillator., 2016,,.		0
67	Optical Vortex Beam Generation in the Deep-Ultraviolet. , 2016, , .		O
68	Fiber-Laser-Based, 80-MHz Picosecond UV Source Generating Multi-Tens of Milliwatt Output Power Across 329-348 nm., 2016,,.		0
69	High-repetition-rate, green-pumped, picosecond optical parametric oscillator based on fan-out PPKTP. , 2016, , .		0
70	Cascaded, deep-infrared, femtosecond optical parametric oscillator based on CdSiP2., 2016,,.		0
71	A Highly Sensitive Pyroresistive Allâ€Organic Infrared Bolometer. Advanced Electronic Materials, 2015, 1, 1500090.	5.1	21
72	Focusing Optimization for High-Power Continuous-Wave Second-Harmonic Generation in the Presence of Thermal Effects. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 185-192.	2.9	14

#	Article	IF	Citations
73	Stable, high-power, Yb-fiber-based, picosecond ultraviolet generation at 355Ânm using BiB_3O_6. Optics Letters, 2015, 40, 403.	3.3	18
74	Phase-Modulation-Mode-Locked Continuous-Wave MgO:PPLN Optical Parametric Oscillator. IEEE Photonics Journal, 2015, 7, 1-8.	2.0	5
7 5	High-power femtosecond mid-infrared optical parametric oscillator at 7  μm based on CdSiP_2. Optics Letters, 2015, 40, 1398.	3.3	51
76	High-power, widely tunable, room-temperature picosecond optical parametric oscillator based on cylindrical 5%MgO:PPLN. Optics Letters, 2015, 40, 3897.	3.3	28
77	Yb-fiber-laser-based, 18  W average power, picosecond ultraviolet source at 266  nm. Optics Let 40, 2397.	tgrs, 2015	
78	High-power, high-repetition-rate performance characteristics of \hat{l}^2 -BaB_2O_4 for single-pass picosecond ultraviolet generation at 266 nm. Optics Express, 2015, 23, 28091.	3.4	26
79	Mid-Infrared Femtosecond Optical Parametric Oscillator Synchronously-Pumped Directly by a Ti:sapphire Laser., 2015,,.		O
80	1.2 W-average-power, Yb-fiber-pumped, picosecond ultraviolet source at 355 nm based on BiB3O6. , 2015, , .		O
81	High-average-power, mid-infrared femtosecond optical parametric oscillator at 7 $\hat{A}\mu m$ based on CdSiP2. , 2015, , .		O
82	High-Power, Widely Tunable, Room-Temperture, Picosecond Optical Parametric Oscillator Based on Cylindrical MgO:PPLN., 2015,,.		O
83	High-power, fiber-pumped, picosecond green source based on BiB3O6. Laser Physics, 2014, 24, 025401.	1.2	9
84	CdSiP2 optical parametric oscillator tunable across 6-8 \hat{l} /4m synchronously pumped by a Ti:sapphire laser. , 2014, , .		0
85	Yb-Fiber-Laser-Pumped Ultrafast Frequency Conversion Sources From the Mid-Infrared to the Ultraviolet. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 624-642.	2.9	23
86	Fewâ€eycle, broadband, midâ€infrared optical parametric oscillator pumped by a 20â€fs Ti:sapphire laser. Laser and Photonics Reviews, 2014, 8, L86-L91.	8.7	48
87	Fiber-laser-pumped, dual-wavelength, picosecond optical parametric oscillator. Optics Letters, 2014, 39, 2739.	3.3	26
88	Tunable, dual-wavelength interferometrically coupled continuous-wave parametric source. Applied Physics B: Lasers and Optics, 2014, 114, 307-312.	2.2	2
89	Yb-Fiber-Laser-Pumped Continuous-Wave Frequency Conversion Sources from the Mid-Infrared to the Ultraviolet. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 350-372.	2.9	11
90	Yb-fiber-laser-pumped, high-repetition-rate picosecond optical parametric oscillator tunable in the ultraviolet. Optics Express, 2014, 22, 11476.	3.4	25

#	Article	IF	Citations
91	Thermal Effects in High-Power Continuous-Wave Single-Pass Second Harmonic Generation. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 563-572.	2.9	23
92	FM Mode-Locked Optical Parametric Oscillator: Pulse Formation and Spectral Characteristics. , 2014, , .		0
93	Few-Cycle, Broadband, Mid-Infrared Parametric Oscillator Pumped by a 20-fs Ti:sapphire Laser., 2014,,.		0
94	Tunable, Continuous-wave, Single-frequency Ultraviolet Sources Based on BiB3O6., 2014,,.		0
95	High-power, picosecond, fiber-laser green source based on BiB <inf>3</inf> O <inf>6</inf> for synchronous pumping of MgO:SPPLT optical parametric oscillator., 2013,,.		O
96	Stable, continuous-wave, ytterbium-fiber-based single-pass ultraviolet source using BiB_3O_6. Optics Letters, 2013, 38, 5114.	3.3	14
97	Directly phase-modulation-mode-locked doubly-resonant optical parametric oscillator. Optics Express, 2013, 21, 23365.	3.4	7
98	Tunable, continuous-wave, ultraviolet source based on intracavity sum-frequency-generation in an optical parametric oscillator using BiB_3O_6. Optics Express, 2013, 21, 24829.	3.4	17
99	Femtosecond-laser pumped CdSiP_2 optical parametric oscillator producing 100  MHz pulses centered at 62  μm. Optics Letters, 2013, 38, 5110.	3.3	53
100	Multi-gigahertz picosecond optical parametric oscillator pumped by 80-MHz Yb-fiber laser. Optics Letters, 2013, 38, 4550.	3.3	17
101	Fiber-laser-based green-pumped picosecond MgO:sPPLT optical parametric oscillator. Optics Letters, 2013, 38, 5349.	3.3	22
102	Breakthroughs in Photonics 2012: Breakthroughs in Optical Parametric Oscillators. IEEE Photonics Journal, 2013, 5, 0700105-0700105.	2.0	26
103	Actively Mode-Locked Continuous-Wave Singly-Resonant Mid-Infrared Optical Parametric Oscillator. , 2013, , .		0
104	Femtosecond CdSiP2 optical parametric oscillator producing 100-MHz pulses centered at 6.2 $\mbox{\^{A}}\mu\mbox{m.}$, 2013, , .		0
105	High-Power, High-Energy Optical Parametric Sources for the Mid-Infrared., 2013,,.		0
106	High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source. Optics Letters, 2012, 37, 5049.	3.3	25
107	Tunable, high-energy, mid-infrared, picosecond optical parametric generator based on CdSiP_2. Optics Express, 2012, 20, 15703.	3.4	55
108	Antiresonant ring output-coupled continuous-wave optical parametric oscillator. Optics Express, 2012, 20, 19313.	3.4	11

#	Article	IF	CITATIONS
109	Frequency-modulation-mode-locked optical parametric oscillator. Optics Letters, 2012, 37, 115.	3.3	14
110	Mode-locked, continuous-wave, singly resonant optical parametric oscillator. Optics Letters, 2012, 37, 3909.	3.3	15
111	Single-frequency, high-power, continuous-wave fiber-laser-pumped Ti:sapphire laser. Applied Optics, 2012, 51, 15.	1.8	19
112	High-energy, tunable, mid-infrared, picosecond optical parametric generation in CdSiP 2., 2012, , .		1
113	Interferometeric output coupling of a continuous-wave optical parametric oscillator. Proceedings of SPIE, 2012, , .	0.8	0
114	Interferometrically Output-Coupled Continuous-Wave Optical Parametric Oscillator., 2012,,.		0
115	High-energy 450-MHz CdSiP2 picosecond optical parametric oscillator near 6.3 \hat{l} /4m for biomedical applications. Proceedings of SPIE, 2012, , .	0.8	0
116	Continuous-wave mode-locked optical parametric oscillator. Proceedings of SPIE, 2012, , .	0.8	0
117	High-power, Yb-fiber-laser-pumped, picosecond parametric source tunable across 752–860Ânm. Optics Letters, 2012, 37, 1577.	3.3	16
118	High-beam-quality narrow-linewidth $13W$ continuous-wave fiber-based source at $970\mathrm{nm}$. Proceedings of SPIE, $2012,\ldots$	0.8	0
119	High-power, continuous-wave Ti:sapphire laser pumped by fiber-laser green source at 532 nm. Optics and Lasers in Engineering, 2012, 50, 215-219.	3.8	24
120	Watt-Level, Tunable, Fiber-Laser-Pumped Picosecond Parametric Source For The Near-Infrared., 2012, , .		0
121	High-power, Fiber-Laser-Pumped, Tunable Picosecond Source for the Near-to-Mid-Infrared., 2012, , .		0
122	Compact, High-Energy, Picosecond Optical Parametric Oscillator at 450 MHz near 6 $\hat{A}\mu m.$, 2012, , .		0
123	Table-Top, High Repetition Rate, 1.5 mJ, Picosecond Optical Parametric Oscillator For Surgical Applications. , 2012, , .		0
124	High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation. Optics Express, 2011, 19, 11152.	3.4	59
125	131 W, high-beam-quality, narrow-linewidth continuous-wave fiber-based source at 970 nm. Optics Express, 2011, 19, 11631.	3.4	12
126	High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT. Optics Express, 2011, 19, 26660.	3.4	21

#	Article	IF	CITATIONS
127	Interferometric output coupling of ring optical oscillators. Optics Letters, 2011, 36, 1068.	3.3	34
128	High-power, continuous-wave, mid-infrared optical parametric oscillator based on MgO:sPPLT. Optics Letters, 2011, 36, 2578.	3.3	20
129	Compact, 15ÂmJ, 450ÂMHz, CdSiP_2 picosecond optical parametric oscillator near 63 Î⅓m. Optics Letters, 2011, 36, 3236.	3.3	46
130	Fiber-laser-based green-pumped continuous-wave singly-resonant optical parametric oscillator. Laser Physics, 2011, 21, 782-789.	1.2	11
131	Optimally-output-coupled, 17.5 W, fiber-laser-pumped continuous-wave optical parametric oscillator. Applied Physics B: Lasers and Optics, 2011, 102, 31-35.	2.2	67
132	Fiber-laser-pumped, high-power, continuous-wave, singly-resonant optical parametric oscillator based on MgO:sPPLT., 2011,,.		0
133	Fiber-Laser-Pumped, High-Power, Continuous-Wave, Mid-Infrared Optical Parametric Oscillator Based on MgO:sPPLT., 2011,,.		0
134	Highly efficient continuous-wave single-pass second-harmonic generation using multicrystal scheme. , 2010, , .		0
135	Continuous-wave-fiber-laser-pumped Ti:sapphire laser. Proceedings of SPIE, 2010, , .	0.8	O
136	High-power, Broadband, Continuous-wave, Mid-infrared Optical Parametric Oscillator based on MgO:PPLN. , 2010, , .		1
137	55%-Efficient, 13-W, Single-Pass SHG of a CW Yb-Fiber Laser in a Double-Crystal Scheme. , 2010, , .		1
138	Multicrystal, continuous-wave, single-pass second-harmonic generation with 56% efficiency. Optics Letters, 2010, 35, 3513.	3.3	48
139	Femtosecond second-harmonic generation in AlGaAs Bragg reflection waveguides: theory and experiment. Journal of the Optical Society of America B: Optical Physics, 2010, 27, 1291.	2.1	10
140	Fiber-laser-pumped Ti:sapphire Laser. , 2010, , .		0
141	Stable, 96 W, continuous-wave, single-frequency, fiber-based green source at 532 nm. Optics Letters, 2009, 34, 1561.	3.3	69
142	Continuous-wave optical parametric oscillator pumped by a fiber laser green source at 532 nm. Optics Letters, 2009, 34, 2255.	3.3	34
143	Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN. Optics Letters, 2009, 34, 3836.	3.3	51
144	High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT. Optics Express, 2009, 17, 13711.	3.4	94

#	Article	IF	CITATIONS
145	High-power, continuous-wave, second-harmonic generation at 532 nm in periodically poled KTiOPO_4. Optics Letters, 2008, 33, 2955.	3.3	48
146	Large third-order optical nonlinearity and optical limiting in symmetric and unsymmetrical phthalocyanines studied using Z-scan. Optics Communications, 2007, 280, 206-212.	2.1	137
147	Nonlinear optical and optical limiting properties of phthalocyanines in solution and thin films of PMMA at 633Ânm studied using a cw laser. Materials Letters, 2007, 61, 4426-4431.	2.6	158