
Minna Woo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4867396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes, 2022, 71, 1-22.	0.6	8
2	Heterogeneity of Diabetes: Î ² -Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Diabetes Care, 2022, 45, 3-22.	8.6	14
3	Hypophosphorylated pRb knockâ€in mice exhibit hallmarks of aging and vitamin Câ€preventable diabetes. EMBO Journal, 2022, 41, e106825.	7.8	13
4	Macrophage Jak2 deficiency accelerates atherosclerosis through defects in cholesterol efflux. Communications Biology, 2022, 5, 132.	4.4	4
5	Feasibility of a Home-Based Exercise Program for Managing Posttransplant Metabolic Syndrome in Lung and Liver Transplant Recipients: Protocol for a Pilot Randomized Controlled Trial. JMIR Research Protocols, 2022, 11, e35700.	1.0	1
6	Metabolic Consequences of Solid Organ Transplantation. Endocrine Reviews, 2021, 42, 171-197.	20.1	16
7	Insulin sensitization causes accelerated sinus nodal dysfunction through autophagic dysregulation in hypertensive mice. Translational and Clinical Pharmacology, 2021, 29, 92.	0.9	3
8	Dj1 deficiency protects against atherosclerosis with anti-inflammatory response in macrophages. Scientific Reports, 2021, 11, 4723.	3.3	2
9	Hepatic <i>lgf1</i> -Deficiency Protects Against Atherosclerosis in Female Mice. Endocrinology, 2021, 162, .	2.8	2
10	JAK2-IGF1 axis in osteoclasts regulates postnatal growth in mice. JCI Insight, 2021, 6, .	5.0	3
11	Distinct roles of UVRAG and EGFR signaling in skeletal muscle homeostasis. Molecular Metabolism, 2021, 47, 101185.	6.5	6
12	Metabolic Complications in Liver Transplantation Recipients: How We Can Optimize Longâ€Term Survival. Liver Transplantation, 2021, 27, 1468-1478.	2.4	10
13	The role of mitochondrial apoptotic pathway in islet amyloid-induced β-cell death. Molecular and Cellular Endocrinology, 2021, 537, 111424.	3.2	5
14	Heterogeneity of Diabetes: β-Cells, Phenotypes, and Precision Medicine: Proceedings of an International Symposium of the Canadian Institutes of Health Research's Institute of Nutrition, Metabolism and Diabetes and the U.S. National Institutes of Health's National Institute of Diabetes and Digestive and Kidney Diseases. Canadian Journal of Diabetes, 2021, 45, 697-713.	0.8	2
15	Discoidin domain receptor 1-deletion ameliorates fibrosis and promotes adipose tissue beiging, brown fat activity, and increased metabolic rate in a mouse model of cardiometabolic disease. Molecular Metabolism, 2020, 39, 101006.	6.5	10
16	Metabolic Role of PTEN in Insulin Signaling and Resistance. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036137.	6.2	19
17	Motion microscopy for label-free detection of circulating breast tumor cells. Biosensors and Bioelectronics, 2020, 158, 112131.	10.1	1
18	Pancreatic β cells: Gatekeepers of type 2 diabetes. Journal of Cell Biology, 2019, 218, 1094-1095.	5.2	22

Minna Woo

#	Article	IF	CITATIONS
19	Involvement of the STAT5-cyclin D/CDK4-pRb pathway in β-cell proliferation stimulated by prolactin during pregnancy. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E135-E144.	3.5	8
20	Dietary Curcumin Intervention Targets Mouse White Adipose Tissue Inflammation and Brown Adipose Tissue UCP1 Expression. Obesity, 2018, 26, 547-558.	3.0	62
21	JAK/STAT – Emerging Players in Metabolism. Trends in Endocrinology and Metabolism, 2018, 29, 55-65.	7.1	198
22	SIRT1 activation attenuates α cell hyperplasia, hyperglucagonaemia and hyperglycaemia in STZ-diabetic mice. Scientific Reports, 2018, 8, 13972.	3.3	13
23	Insulin Receptor-Mediated Stimulation Boosts T Cell Immunity during Inflammation and Infection. Cell Metabolism, 2018, 28, 922-934.e4.	16.2	188
24	Janus Kinase 2 (JAK2) Dissociates Hepatosteatosis from Hepatocellular Carcinoma in Mice. Journal of Biological Chemistry, 2017, 292, 3789-3799.	3.4	19
25	FAK signalling controls insulin sensitivity through regulation of adipocyte survival. Nature Communications, 2017, 8, 14360.	12.8	50
26	Janus Kinase 2 Regulates Transcription Factor EB Expression and Autophagy Completion in Glomerular Podocytes. Journal of the American Society of Nephrology: JASN, 2017, 28, 2641-2653.	6.1	21
27	ULK1 prevents cardiac dysfunction in obesity through autophagy-meditated regulation of lipid metabolism. Cardiovascular Research, 2017, 113, 1137-1147.	3.8	44
28	Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation. Scientific Reports, 2017, 7, 7653.	3.3	41
29	Extracellular matrix-derived extracellular vesicles promote cardiomyocyte growth and electrical activity in engineered cardiac atria. Biomaterials, 2017, 146, 49-59.	11.4	40
30	Hepatic JAK2 protects against atherosclerosis through circulating IGF-1. JCI Insight, 2017, 2, .	5.0	14
31	Nucleic Acid-Targeting Pathways Promote Inflammation in Obesity-Related Insulin Resistance. Cell Reports, 2016, 16, 717-730.	6.4	77
32	Reduction in New-Onset Diabetes Mellitus after Renal Transplant with Erythropoietin-Stimulating Agents: A Retrospective Cohort Study. Canadian Journal of Kidney Health and Disease, 2016, 3, 114.	1.1	0
33	JAK2 promotes brown adipose tissue function and is required for diet- and cold-induced thermogenesis in mice. Diabetologia, 2016, 59, 187-196.	6.3	41
34	Erythropoietin and glucose homeostasis in women at varying degrees of future diabetic risk. Journal of Diabetes and Its Complications, 2015, 29, 26-31.	2.3	3
35	Perforin Is a Novel Immune Regulator of Obesity-Related Insulin Resistance. Diabetes, 2015, 64, 90-103.	0.6	54
36	DJ-1 links muscle ROS production with metabolic reprogramming and systemic energy homeostasis in mice. Nature Communications, 2015, 6, 7415.	12.8	74

Minna Woo

#	Article	IF	CITATIONS
37	Regulation of Obesity-Related Insulin Resistance with Gut Anti-inflammatory Agents. Cell Metabolism, 2015, 21, 527-542.	16.2	283
38	PTEN Deletion in Pancreatic α-Cells Protects Against High-Fat Diet–Induced Hyperglucagonemia and Insulin Resistance. Diabetes, 2015, 64, 147-157.	0.6	17
39	Timing is everything: Rb's choice in islet-cell fate. Cell Cycle, 2014, 13, 873-874.	2.6	0
40	Rb and p107 are required for alpha cell survival, beta cell cycle control and glucagon-like peptide-1 action. Diabetologia, 2014, 57, 2555-2565.	6.3	10
41	Adipocyte-specific deficiency of Janus kinase (JAK) 2 in mice impairs lipolysis and increases body weight, and leads to insulin resistance with ageing. Diabetologia, 2014, 57, 1016-1026.	6.3	54
42	The role of caspase-8 in amyloid-induced beta cell death in human and mouse islets. Diabetologia, 2014, 57, 765-775.	6.3	28
43	Pten deletion in RIP-Cre neurons protects against type 2 diabetes by activating the anti-inflammatory reflex. Nature Medicine, 2014, 20, 484-492.	30.7	60
44	Beyond Erythropoiesis: Emerging Metabolic Roles of Erythropoietin. Diabetes, 2014, 63, 2229-2231.	0.6	13
45	In Vivo Knockdown of Adipocyte Erythropoietin Receptor Does Not Alter Glucose or Energy Homeostasis. Endocrinology, 2013, 154, 3652-3659.	2.8	18
46	Retinoblastoma tumor suppressor protein in pancreatic progenitors controls α- and β-cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14723-14728.	7.1	17
47	In Vivo Role of Focal Adhesion Kinase in Regulating Pancreatic β-Cell Mass and Function Through Insulin Signaling, Actin Dynamics, and Granule Trafficking. Diabetes, 2012, 61, 1708-1718.	0.6	62
48	Hepatocyte-specific Deletion of Janus Kinase 2 (JAK2) Protects against Diet-induced Steatohepatitis and Glucose Intolerance. Journal of Biological Chemistry, 2012, 287, 10277-10288.	3.4	58
49	The redundant role of JAK2 in regulating pancreatic \hat{l}^2 -cell mass. Islets, 2011, 3, 389-392.	1.8	4
50	Deletion of <i>Pten</i> in Pancreatic β-Cells Protects Against Deficient β-Cell Mass and Function in Mouse Models of Type 2 Diabetes. Diabetes, 2010, 59, 3117-3126.	0.6	59
51	Erythropoietin protects against diabetes through direct effects on pancreatic Î ² cells. Journal of Experimental Medicine, 2010, 207, 2831-2842.	8.5	119
52	Deletion of Fas in the pancreatic β-cells leads to enhanced insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1304-E1312.	3.5	19
53	PTEN Deletion and Concomitant c-Myc Activation Do Not Lead to Tumor Formation in Pancreatic β Cells. Journal of Biological Chemistry, 2009, 284, 2917-2922.	3.4	12
54	Executionary pathway for apoptosis: lessons from mutant mice. Cell Research, 2000, 10, 267-278.	12.0	41

#	Article	IF	CITATIONS
55	Gene targeting in the analysis of mammalian apoptosis and TNF receptor superfamily signaling. Immunological Reviews, 1999, 169, 283-302.	6.0	70