Wim J Quax

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4867386/publications.pdf

Version: 2024-02-01

48315 34105 9,991 228 52 88 h-index citations g-index papers 240 240 240 9012 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced extrinsic apoptosis of therapy-induced senescent cancer cells using a death receptor 5 (DR5) selective agonist. Cancer Letters, 2022, 525, 67-75.	7.2	12
2	Enzyme-Mediated Quenching of the Pseudomonas Quinolone Signal (PQS): A Comparison between Naturally Occurring and Engineered PQS-Cleaving Dioxygenases. Biomolecules, 2022, 12, 170.	4.0	4
3	Receptor Specificity Engineering of TNF Superfamily Ligands. Pharmaceutics, 2022, 14, 181.	4.5	6
4	Thieno[2,3- <i>d</i>]pyrimidine-2,4(1 <i>H</i> ,3 <i>H</i>)-dione Derivative Inhibits <scp>d</scp> -Dopachrome Tautomerase Activity and Suppresses the Proliferation of Non-Small Cell Lung Cancer Cells. Journal of Medicinal Chemistry, 2022, 65, 2059-2077.	6.4	14
5	Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics, 2022, 14, 395.	4.5	6
6	Fighting Acinetobacter baumannii infections with the acylase PvdQ. Microbes and Infection, 2022, , $104951.$	1.9	4
7	Discovery of chromene compounds as inhibitors of PvdQ acylase of Pseudomonas aeruginosa. Microbes and Infection, 2022, , 105017.	1.9	1
8	Positioning <i>Bacillus subtilis</i> as terpenoid cell factory. Journal of Applied Microbiology, 2021, 130, 1839-1856.	3.1	11
9	High level production of amorphadiene using Bacillus subtilis as an optimized terpenoid cell factory. New Biotechnology, 2021, 60, 159-167.	4.4	14
10	Current State and Future Directions of Genetics and Genomics of Endophytic Fungi for Bioprospecting Efforts. Frontiers in Bioengineering and Biotechnology, 2021, 9, 649906.	4.1	23
11	Engineering of Multiple Modules to Improve Amorphadiene Production in <i>Bacillus subtilis</i> Using CRISPR-Cas9. Journal of Agricultural and Food Chemistry, 2021, 69, 4785-4794.	5.2	19
12	Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Antiâ€Proliferative Activity in Lung Cancer Cells. Angewandte Chemie - International Edition, 2021, 60, 17514-17521.	13.8	22
13	Proteolysis Targeting Chimera (PROTAC) for Macrophage Migration Inhibitory Factor (MIF) Has Antiâ€Proliferative Activity in Lung Cancer Cells. Angewandte Chemie, 2021, 133, 17655-17662.	2.0	3
14	Dihydroartemisinin-Transferrin Adducts Enhance TRAIL-Induced Apoptosis in Triple-Negative Breast Cancer in a P53-Independent and ROS-Dependent Manner. Frontiers in Oncology, 2021, 11, 789336.	2.8	7
15	Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. Journal of Ethnopharmacology, 2020, 246, 112188.	4.1	46
16	A regulated synthetic operon facilitates stable overexpression of multigene terpenoid pathway in <i>Bacillus subtilis</i> . Journal of Industrial Microbiology and Biotechnology, 2020, 47, 243-249.	3.0	10
17	A novel mechanism of inhibition by phenylthiourea on PvdP, a tyrosinase synthesizing pyoverdine of Pseudomonas aeruginosa. International Journal of Biological Macromolecules, 2020, 146, 212-221.	7.5	16
18	Development of phenylthiourea derivatives as allosteric inhibitors of pyoverdine maturation enzyme PvdP tyrosinase. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 127409.	2.2	1

#	Article	IF	Citations
19	7-Hydroxycoumarins Are Affinity-Based Fluorescent Probes for Competitive Binding Studies of Macrophage Migration Inhibitory Factor. Journal of Medicinal Chemistry, 2020, 63, 11920-11933.	6.4	17
20	Artemisinin Derivatives Stimulate DR5-Specific TRAIL-Induced Apoptosis by Regulating Wildtype P53. Cancers, 2020, 12, 2514.	3.7	13
21	Death Receptor 5 Displayed on Extracellular Vesicles Decreases TRAIL Sensitivity of Colon Cancer Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 318.	3.7	15
22	Engineering the specificity of <scp><i>Streptococcus pyogenes</i></scp> sortase A by loop grafting. Proteins: Structure, Function and Bioinformatics, 2020, 88, 1394-1400.	2.6	16
23	A novel histone acetyltransferase inhibitor A485 improves sensitivity of non-small-cell lung carcinoma cells to TRAIL. Biochemical Pharmacology, 2020, 175, 113914.	4.4	21
24	Production of Squalene in <i>Bacillus subtilis</i> by Squalene Synthase Screening and Metabolic Engineering. Journal of Agricultural and Food Chemistry, 2020, 68, 4447-4455.	5.2	24
25	Immobilized Acylase PvdQ Reduces Pseudomonas aeruginosa Biofilm Formation on PDMS Silicone. Frontiers in Chemistry, 2020, 8, 54.	3.6	13
26	Betacyanins, major components in Opuntia red-purple fruits, protect against acetaminophen-induced acute liver failure. Food Research International, 2020, 137, 109461.	6.2	24
27	A Bispecific Inhibitor of the EGFR/ADAM17 Axis Decreases Cell Proliferation and Migration of EGFR-Dependent Cancer Cells. Cancers, 2020, 12, 411.	3.7	10
28	Improving TRAIL-induced apoptosis in cancers by interfering with histone modifications. , 2020, 3, 791-803.		0
29	Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions. Journal of Molecular Biology, 2019, 431, 2629-2643.	4.2	100
30	Exoproteome Heterogeneity among Closely Related <i>Staphylococcus aureus</i> t437 Isolates and Possible Implications for Virulence. Journal of Proteome Research, 2019, 18, 2859-2874.	3.7	16
31	Creation of <scp>RANKL</scp> mutants with low affinity for decoy receptor <scp>OPG</scp> and their potential antiâ€fibrosis activity. FEBS Journal, 2019, 286, 3582-3593.	4.7	11
32	Histone Deacetylase Inhibitors Sensitize TRAIL-Induced Apoptosis in Colon Cancer Cells. Cancers, 2019, 11, 645.	3.7	33
33	Inhibitory selectivity among class I HDACs has a major impact on inflammatory gene expression in macrophages. European Journal of Medicinal Chemistry, 2019, 177, 457-466.	5.5	19
34	Enzymatic Quorum Quenching in Biofilms. , 2019, , 173-193.		7
35	Metabolic Engineering of Bacillus subtilis Toward Taxadiene Biosynthesis as the First Committed Step for Taxol Production. Frontiers in Microbiology, 2019, 10, 218.	3.5	57
36	Novel 15-Lipoxygenase-1 Inhibitor Protects Macrophages from Lipopolysaccharide-Induced Cytotoxicity. Journal of Medicinal Chemistry, 2019, 62, 4624-4637.	6.4	14

#	Article	IF	Citations
37	Sortase mutants with improved protein thermostability and enzymatic activity obtained by consensus design. Protein Engineering, Design and Selection, 2019, 32, 555-564.	2.1	10
38	Death receptor 5 is activated by fucosylation in colon cancer cells. FEBS Journal, 2019, 286, 555-571.	4.7	23
39	Cytotoxic Deoxypodophyllotoxin Can Be Extracted in High Purity from Anthriscus sylvestris Roots by Supercritical Carbon Dioxide. Planta Medica, 2018, 84, 544-550.	1.3	4
40	PvdQ Quorum Quenching Acylase Attenuates Pseudomonas aeruginosa Virulence in a Mouse Model of Pulmonary Infection. Frontiers in Cellular and Infection Microbiology, 2018, 8, 119.	3.9	49
41	Catalysis of amorpha-4,11-diene synthase unraveled and improved by mutability landscape guided engineering. Scientific Reports, 2018, 8, 9961.	3.3	28
42	A nonalcoholic fatty liver disease cirrhosis model in gerbil: the dynamic relationship between hepatic lipid metabolism and cirrhosis. International Journal of Clinical and Experimental Pathology, 2018, 11, 146-157.	0.5	2
43	Novel <scp>RANKL DE</scp> â€loop mutants antagonize <scp>RANK</scp> â€mediated osteoclastogenesis. FEBS Journal, 2017, 284, 2501-2512.	4.7	10
44	Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2017, 101, 2383-2395.	3.6	25
45	Methyl jasmonate treatment increases podophyllotoxin production in Podophyllum hexandrum roots under glasshouse conditions. Plant and Soil, 2017, 417, 117-126.	3.7	9
46	Receptor-specific TRAIL as a means to achieve targeted elimination of activated hepatic stellate cells. Journal of Drug Targeting, 2017, 25, 360-369.	4.4	14
47	Deciphering Physiological Functions of AHL Quorum Quenching Acylases. Frontiers in Microbiology, 2017, 8, 1123.	3.5	64
48	A Glimpse into the Biosynthesis of Terpenoids. KnE Life Sciences, 2017, 3, 81.	0.1	49
49	Complete Genome Sequence of <i>Bacillus subtilis</i> subsp. <i>subtilis</i> Strain â^†6. Genome Announcements, 2016, 4, .	0.8	8
50	Quantitative antibody-free LC–MS/MS analysis of sTRAIL in sputum and saliva at the sub-ng/mL level. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1032, 205-210.	2.3	11
51	Insights into the Three-Dimensional Structure of Amorpha-4,11-diene Synthase and Probing of Plasticity Residues. Journal of Natural Products, 2016, 79, 2455-2463.	3.0	14
52	Highly sensitive antibody-free μLC–MS/MS quantification of rhTRAIL in serum. Bioanalysis, 2016, 8, 881-890.	1.5	10
53	Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases. Nature Communications, 2016, 7, 10911.	12.8	80
54	Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity. Oncogene, 2016, 35, 1261-1270.	5.9	54

#	Article	IF	CITATIONS
55	High-Throughput Screening in Protein Engineering: Recent Advances and Future Perspectives. International Journal of Molecular Sciences, 2015, 16, 24918-24945.	4.1	42
56	Engineering Escherichia coli for methanol conversion. Metabolic Engineering, 2015, 28, 190-201.	7.0	166
57	Enhanced C30 carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes. Applied Microbiology and Biotechnology, 2015, 99, 5907-5915.	3.6	43
58	Metabolic engineering of Bacillus subtilis for terpenoid production. Applied Microbiology and Biotechnology, 2015, 99, 9395-9406.	3.6	34
59	DR4 specific TRAIL variants are more efficacious than wild-type TRAIL in pancreatic cancer. Cancer Biology and Therapy, 2014, 15, 1658-1666.	3.4	28
60	Decreased Affinity of Recombinant Human Tumor Necrosis Factor-related Apoptosis-inducing Ligand (rhTRAIL) D269H/E195R to Osteoprotegerin (OPG) Overcomes TRAIL Resistance Mediated by the Bone Microenvironment. Journal of Biological Chemistry, 2014, 289, 1071-1078.	3.4	14
61	PvdP Is a Tyrosinase That Drives Maturation of the Pyoverdine Chromophore in Pseudomonas aeruginosa. Journal of Bacteriology, 2014, 196, 2681-2690.	2.2	39
62	Crystal structures of two Bacillus carboxylesterases with different enantioselectivities. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 567-575.	2.3	20
63	Reducing virulence of the human pathogen <i>Burkholderia</i> by altering the substrate specificity of the quorum-quenching acylase PvdQ. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1568-1573.	7.1	65
64	Two death-inducing human TRAIL receptors to target in cancer: Similar or distinct regulation and function?. Biochemical Pharmacology, 2014, 91, 447-456.	4.4	53
65	<i>Deinococcus radiodurans</i> can interfere with quorum sensing by producing an AHL-acylase and an AHL-lactonase. FEMS Microbiology Letters, 2014, 356, 62-70.	1.8	31
66	The ER stress inducer DMC enhances TRAIL-induced apoptosis in glioblastoma. SpringerPlus, 2014, 3, 495.	1.2	14
67	Assessing Pseudomonas Virulence with Nonmammalian Host: Galleria mellonella. Methods in Molecular Biology, 2014, 1149, 681-688.	0.9	37
68	Production of α-cuprenene in Xanthophyllomyces dendrorhous: a step closer to a potent terpene biofactory. Microbial Cell Factories, 2013, 12, 13.	4.0	29
69	Caenorhabditis elegans reveals novel Pseudomonas aeruginosa virulence mechanism. Trends in Microbiology, 2013, 21, 315-316.	7.7	28
70	Antibody-Free LC-MS/MS Quantification of rhTRAIL in Human and Mouse Serum. Analytical Chemistry, 2013, 85, 10754-10760.	6.5	22
71	Development of a dry, stable and inhalable acyl–homoserine–lactone–acylase powder formulation for the treatment of pulmonary Pseudomonas aeruginosa infections. European Journal of Pharmaceutical Sciences, 2013, 48, 637-643.	4.0	41
72	Bacterial Enzymes. , 2013, , 193-211.		0

#	Article	IF	CITATIONS
73	Enantioselective Synthesis of Nâ€Substituted Aspartic Acids Using an Engineered Variant of Methylaspartate Ammonia Lyase. ChemCatChem, 2013, 5, 1325-1327.	3.7	21
74	Nutlin-3 preferentially sensitises wild-type p53-expressing cancer cells to DR5-selective TRAIL over rhTRAIL. British Journal of Cancer, 2013, 109, 2685-2695.	6.4	35
75	Choosing an Appropriate Infection Model to Study Quorum Sensing Inhibition in Pseudomonas Infections. International Journal of Molecular Sciences, 2013, 14, 19309-19340.	4.1	49
76	Kinetic Resolution and Stereoselective Synthesis of 3â€Substituted Aspartic Acids by Using Engineered Methylaspartate Ammonia Lyases. Chemistry - A European Journal, 2013, 19, 11148-11152.	3.3	11
77	Kinetics in Signal Transduction Pathways Involving Promiscuous Oligomerizing Receptors Can Be Determined by Receptor Specificity: Apoptosis Induction by TRAIL. Molecular and Cellular Proteomics, 2012, 11, M111.013730.	3.8	25
78	Enhancement of the enantioselectivity of carboxylesterase A by structure-based mutagenesis. Journal of Biotechnology, 2012, 158, 36-43.	3.8	23
79	Heterologous expression of pentalenene synthase (PSS) from Streptomyces UC5319 in Xanthophyllomyces dendrorhous. Journal of Biotechnology, 2012, 161, 302-307.	3.8	4
80	An Esterase with Superior Activity and Enantioselectivity towards 1,2â€∢i>O⟨/i>â€Isopropylideneglycerol Esters Obtained by Protein Design. Advanced Synthesis and Catalysis, 2012, 354, 3009-3015.	4.3	14
81	Kinome profiling of non-canonical TRAIL signaling reveals RIP1-Src-STAT3 dependent invasion in resistant non-small cell lung cancer cells. Journal of Cell Science, 2012, 125, 4651-61.	2.0	57
82	Dehalogenation of an Anthropogenic Compound by an Engineered Variant of the Mouse Cytokine Macrophage Migration Inhibitory Factor. ChemBioChem, 2012, 13, 1270-1273.	2.6	6
83	Enhancement of the Promiscuous Aldolase and Dehydration Activities of 4â€Oxalocrotonate Tautomerase by Protein Engineering. ChemBioChem, 2012, 13, 1274-1277.	2.6	24
84	An Unexpected Promiscuous Activity of 4â€Oxalocrotonate Tautomerase: The <i>cis</i> – <i>trans</i> lsomerisation of Nitrostyrene. ChemBioChem, 2012, 13, 1869-1873.	2.6	11
85	Engineering methylaspartate ammonia lyase for the asymmetric synthesis of unnatural amino acids. Nature Chemistry, 2012, 4, 478-484.	13.6	77
86	The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews, 2012, 76, 46-65.	6.6	619
87	In vitro regeneration of wild chervil (Anthriscus sylvestris L.). In Vitro Cellular and Developmental Biology - Plant, 2012, 48, 355-361.	2.1	9
88	Characterization of a thermostable methylaspartate ammonia lyase from Carboxydothermus hydrogenoformans. Applied Microbiology and Biotechnology, 2012, 94, 385-397.	3.6	13
89	Lipase A gene transcription in Pseudomonas alcaligenes is under control of RNA polymerase $\sharp f54$ and response regulator LipR. FEMS Microbiology Letters, 2012, 329, 146-153.	1.8	7
90	Bridging between Organocatalysis and Biocatalysis: Asymmetric Addition of Acetaldehyde to βâ€Nitrostyrenes Catalyzed by a Promiscuous Prolineâ€Based Tautomerase. Angewandte Chemie - International Edition, 2012, 51, 1240-1243.	13.8	85

#	Article	IF	Citations
91	Identification of the TAK1-NF-ήB Axis As Critical Regulator of AML Stem and Progenitor Cell Survival Blood, 2012, 120, 2982-2982.	1.4	O
92	Characterization of a Newly Identified Mycobacterial Tautomerase with Promiscuous Dehalogenase and Hydratase Activities Reveals a Functional Link to a Recently Diverged <i>cis</i> -3-Chloroacrylic Acid Dehalogenase. Biochemistry, 2011, 50, 2889-2899.	2.5	12
93	Seasonal Variations in the Deoxypodophyllotoxin Content and Yield of Anthriscus sylvestris L. (Hoffm.) Grown in the Field and under Controlled Conditions. Journal of Agricultural and Food Chemistry, 2011, 59, 8132-8139.	5.2	15
94	Unraveling the Binding Mechanism of Trivalent Tumor Necrosis Factor Ligands and Their Receptors. Molecular and Cellular Proteomics, 2011, 10, M110.002808.	3.8	24
95	Targeting AML through DR4 with a novel variant of rhTRAIL. Journal of Cellular and Molecular Medicine, 2011, 15, 2216-2231.	3.6	18
96	Functional analysis of the sortase YhcS in <i>Bacillus subtilis</i> Forteomics, 2011, 11, 3905-3913.	2.2	9
97	Systematic Screening for Catalytic Promiscuity in 4â€Oxalocrotonate Tautomerase: Enamine Formation and Aldolase Activity. ChemBioChem, 2011, 12, 602-609.	2.6	43
98	PAO305 of Pseudomonas aeruginosa is a quorum quenching acylhomoserine lactone acylase belonging to the Ntn hydrolase superfamily. Microbiology (United Kingdom), 2011, 157, 2042-2055.	1.8	84
99	Discovery of an Escherichia coli Esterase with High Activity and Enantioselectivity toward 1,2- <i>O</i> -Isopropylideneglycerol Esters. Applied and Environmental Microbiology, 2011, 77, 6094-6099.	3.1	30
100	Computational Design of TNF Ligand-Based Protein Therapeutics. Advances in Experimental Medicine and Biology, 2011, 691, 521-534.	1.6	2
101	Abstract 3399: Apoptosis activation by TRAIL receptor selective variants in glioblastoma (stem) cells. , 2011, , .		0
102	NF-κB and MCL-1 Are Important Determinants for the Effectiveness of Bortezomib In CD34+ AML Versus CD34â^' AML Cells. Blood, 2011, 118, 1420-1420.	1.4	0
103	Synthetic constrained peptide selectively binds and antagonizes death receptor 5. FEBS Journal, 2010, 277, 1653-1665.	4.7	19
104	Contributions of the Pre- and Pro-Regions of a <i>Staphylococcus hyicus</i> Lipase to Secretion of a Heterologous Protein by <i>Bacillus subtilis</i> Applied and Environmental Microbiology, 2010, 76, 659-669.	3.1	9
105	Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions. Microbiology (United Kingdom), 2010, 156, 49-59.	1.8	100
106	The Molecular Cloning of Dihydroartemisinic Aldehyde Reductase and its Implication in Artemisinin Biosynthesis in <i>Artemisia annua</i> Planta Medica, 2010, 76, 1778-1783.	1.3	41
107	Molecular Cloning and Characterization of a Broad Substrate Terpenoid Oxidoreductase from Artemisia annua. Plant and Cell Physiology, 2010, 51, 1219-1228.	3.1	10
108	Structural and Functional Characterization of a Macrophage Migration Inhibitory Factor Homologue from the Marine Cyanobacterium <i>Prochlorococcus marinus</i> , Biochemistry, 2010, 49, 7572-7581.	2.5	20

#	Article	IF	CITATIONS
109	The quorum-quenching $\langle i \rangle N \langle i \rangle$ -acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 686-691.	7.1	124
110	The acylase PvdQ has a conserved function among fluorescent <i>Pseudomonas</i> spp Environmental Microbiology Reports, 2010, 2, 433-439.	2.4	13
111	Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants. Cell Death and Disease, 2010, 1, e83-e83.	6.3	63
112	Reduced Coniferin and Enhanced 6-Methoxypodophyllotoxin Production in Linum flavum Cell Cultures. Pharmacognosy Journal, 2010, 2, 74-80.	0.8	3
113	Enhanced Antitumor Efficacy of a DR5-Specific TRAIL Variant over Recombinant Human TRAIL in a Bioluminescent Ovarian Cancer Xenograft Model. Clinical Cancer Research, 2009, 15, 2048-2057.	7.0	48
114	Quorum-Quenching Acylase Reduces the Virulence of <i>Pseudomonas aeruginosa</i> in a <i>Caenorhabditis elegans</i> Infection Model. Antimicrobial Agents and Chemotherapy, 2009, 53, 4891-4897.	3.2	109
115	Alteration of the Diastereoselectivity of 3â€Methylaspartate Ammonia Lyase by Using Structureâ€Based Mutagenesis. ChemBioChem, 2009, 10, 2236-2245.	2.6	24
116	Siteâ€directed mutagenesis, kinetic and inhibition studies of aspartate ammonia lyase from <i>Bacillus</i> sp. YM55â€1. FEBS Journal, 2009, 276, 2994-3007.	4.7	18
117	Heterologous production of Escherichia coli penicillin G acylase in Pseudomonas aeruginosa. Journal of Biotechnology, 2009, 142, 250-258.	3.8	16
118	Enhancement of Antitumor Properties of rhTRAIL by Affinity Increase toward Its Death Receptorsâ€. Biochemistry, 2009, 48, 2180-2191.	2.5	29
119	The conformation of the extracellular binding domain of Death Receptor 5 in the presence and absence of the activating ligand TRAIL: A molecular dynamics study. Proteins: Structure, Function and Bioinformatics, 2008, 70, 333-343.	2.6	15
120	RGD-avidinâ€"biotin pretargeting to αvβ3 integrin enhances the proapoptotic activity of TNFα related apoptosis inducing ligand (TRAIL). Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 225-235.	4.9	10
121	Genetic or chemical protease inhibition causes significant changes in the <i>Bacillus subtilis</i> exoproteome. Proteomics, 2008, 8, 2704-2713.	2.2	28
122	A Novel Genetic Selection System for Improved Enantioselectivity of <i>Bacillus subtilis</i> Lipase A. ChemBioChem, 2008, 9, 1110-1115.	2.6	60
123	Evaluation of Different Glutaryl Acylase Mutants to Improve the Hydolysis of Cephalosporin C in the Absence of Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2008, 350, 343-348.	4.3	23
124	Metabolic stereoselectivity of cytochrome P450 3A4 towards deoxypodophyllotoxin: In silico predictions and experimental validation. European Journal of Medicinal Chemistry, 2008, 43, 1171-1179.	5.5	21
125	Loop Grafting of Bacillus subtilis Lipase A: Inversion of Enantioselectivity. Chemistry and Biology, 2008, 15, 782-789.	6.0	35
126	Bioconversion of Mono- and Sesquiterpenoids by Recombinant Human Cytochrome P450 Monooxygenases. Pharmaceutical Biology, 2008, 46, 710-718.	2.9	2

#	Article	IF	CITATIONS
127	Modulation of Thiol-Disulfide Oxidoreductases for Increased Production of Disulfide-Bond-Containing Proteins in <i>Bacillus subtilis</i> . Applied and Environmental Microbiology, 2008, 74, 7536-7545.	3.1	22
128	DR4-selective Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Variants Obtained by Structure-based Design. Journal of Biological Chemistry, 2008, 283, 20560-20568.	3.4	56
129	Lipase Expression in <i>Pseudomonas alcaligenes</i> Is Under the Control of a Two-Component Regulatory System. Applied and Environmental Microbiology, 2008, 74, 1402-1411.	3.1	23
130	Essential Oil Constituents of <i>Piper cubeba </i> L. fils. from Indonesia. Journal of Essential Oil Research, 2007, 19, 14-17.	2.7	22
131	Thiol-disulphide oxidoreductase modules in the low-GC Gram-positive bacteria. Molecular Microbiology, 2007, 64, 984-999.	2,5	74
132	Selection strategies for improved biocatalysts. FEBS Journal, 2007, 274, 2181-2195.	4.7	65
133	A highly active adipylâ€cephalosporin acylase obtained via rational randomization. FEBS Journal, 2007, 274, 5600-5610.	4.7	11
134	Lignan profile of Piper cubeba, an Indonesian medicinal plant. Biochemical Systematics and Ecology, 2007, 35, 397-402.	1.3	30
135	Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Applied Microbiology and Biotechnology, 2007, 75, 1377-1384.	3.6	93
136	Quorum-Quenching Acylases in Pseudomonas aeruginosa., 2007,, 429-449.		6
137	Selection strategies for improved biocatalysts. FEBS Journal, 2007, .	4.7	0
138	Phage Display of an Intracellular Carboxylesterase of Bacillus subtilis: Comparison of Sec and Tat Pathway Export Capabilities. Applied and Environmental Microbiology, 2006, 72, 4589-4595.	3.1	20
139	Secretion of functional human interleukin-3 from Bacillus subtilis. Journal of Biotechnology, 2006, 123, 211-224.	3.8	72
140	Bioconversion of deoxypodophyllotoxin into epipodophyllotoxin in E. coli using human cytochrome P450 3A4. Journal of Biotechnology, 2006, 126, 383-393.	3.8	37
141	Lignans from Cell Suspension Cultures of Phyllanthusniruri, an Indonesian Medicinal Plant. Journal of Natural Products, 2006, 69, 55-58.	3.0	28
142	Bacterial Enzymes. , 2006, , 777-796.		6
143	Quorum Quenching by an N-Acyl-Homoserine Lactone Acylase from Pseudomonas aeruginosa PAO1. Infection and Immunity, 2006, 74, 1673-1682.	2.2	297
144	Proteomic dissection of potential signal recognition particle dependence in protein secretion by Bacillus subtilis. Proteomics, 2006, 6, 3636-3648.	2.2	47

#	Article	IF	CITATIONS
145	The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis. FEBS Journal, 2006, 273, 3816-3827.	4.7	61
146	Combinatorial biosynthesis of medicinal plant secondary metabolites. New Biotechnology, 2006, 23, 265-279.	2.7	99
147	Directed Evolution of Bacillus subtilis Lipase A by Use of Enantiomeric Phosphonate Inhibitors: Crystal Structures and Phage Display Selection. ChemBioChem, 2006, 7, 149-157.	2.6	64
148	Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8634-8639.	7.1	151
149	A Disulfide Bond-Containing Alkaline Phosphatase Triggers a BdbC-Dependent Secretion Stress Response in Bacillus subtilis. Applied and Environmental Microbiology, 2006, 72, 6876-6885.	3.1	28
150	Signal peptide hydrophobicity is critical for early stages in protein export by <i>Bacillus subtilis</i> FEBS Journal, 2005, 272, 4617-4630.	4.7	55
151	Comparison and functional characterisation of three homologous intracellular carboxylesterases of Bacillus subtilis. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 261-270.	1.8	14
152	Volatile components of the aerial parts of Artemisia pontica L. grown in Bulgaria. Flavour and Fragrance Journal, 2005, 20, 145-148.	2.6	9
153	A validated gas chromatographic method for the evaluation of enzymatic enantioselectivity in kinetic resolution applications. Journal of Separation Science, 2005, 28, 501-505.	2.5	2
154	Directed evolution: selecting today's biocatalysts. New Biotechnology, 2005, 22, 1-9.	2.7	114
155	RET-Familial Medullary Thyroid Carcinoma Mutants Y791F and S891A Activate a Src/JAK/STAT3 Pathway, Independent of Glial Cell Line–Derived Neurotrophic Factor. Cancer Research, 2005, 65, 1729-1737.	0.9	84
156	Genes Involved in SkfA Killing Factor Production Protect a Bacillus subtilis Lipase against Proteolysis. Applied and Environmental Microbiology, 2005, 71, 1899-1908.	3.1	19
157	Stabilization of TRAIL, an all-Â-sheet multimeric protein, using computational redesign. Protein Engineering, Design and Selection, 2004, 17, 673-680.	2.1	30
158	FlhF, the Third Signal Recognition Particle-GTPase of <i>Bacillus subtilis</i> , Is Dispensable for Protein Secretion. Journal of Bacteriology, 2004, 186, 5956-5960.	2.2	24
159	The Bacillus secretion stress response is an indicator for alpha-amylase production levels. Letters in Applied Microbiology, 2004, 39, 65-73.	2.2	26
160	Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1694, 299-310.	4.1	382
161	Proteomics of Protein Secretion by <i>Bacillus subtilis</i> : Separating the "Secrets―of the Secretome. Microbiology and Molecular Biology Reviews, 2004, 68, 207-233.	6.6	497
162	Improved \hat{l}^2 -lactam acylases and their use as industrial biocatalysts. Current Opinion in Biotechnology, 2004, 15, 349-355.	6.6	68

#	Article	IF	Citations
163	Characterization of the interaction between human complement protein C4 and a single-chain variable fragment antibody by capillary electrophoresis and surface plasmon resonance. Electrophoresis, 2004, 25, 1561-1568.	2.4	9
164	Composition of the essential oils of Kaempferia rotunda L. and Kaempferia angustifolia Roscoe rhizomes from Indonesia. Flavour and Fragrance Journal, 2004, 19, 145-148.	2.6	24
165	Mutational Analysis of a Key Residue in the Substrate Specificity of a Cephalosporin Acylase. ChemBioChem, 2004, 5, 820-825.	2.6	19
166	Chiral gas chromatography for the determination of 1,2-O-isopropylidene-sn-glycerol stereoisomers. Journal of Separation Science, 2003, 26, 771-776.	2.5	12
167	Extracellular lipases fromBacillus subtilis: regulation of gene expression and enzyme activity by amino acid supply and external pH. FEMS Microbiology Letters, 2003, 225, 319-324.	1.8	42
168	Binding of phage displayed Bacillus subtilis lipase A to a phosphonate suicide inhibitor. Journal of Biotechnology, 2003, 101, 19-28.	3.8	22
169	Analysis of a substrate specificity switch residue of cephalosporin acylase. Biochemical and Biophysical Research Communications, 2003, 312, 755-760.	2.1	22
170	Genome Engineering Reveals Large Dispensable Regions in Bacillus subtilis. Molecular Biology and Evolution, 2003, 20, 2076-2090.	8.9	188
171	Alternative Splicing of Cyclooxygenase-1 mRNA in the Human Iris. Ophthalmic Research, 2003, 35, 160-163.	1.9	3
172	A Phytochemical Study of Lignans in Whole Plants and Cell Suspension Cultures of Anthriscus sylvestris. Planta Medica, 2003, 69, 733-738.	1.3	24
173	The Bioconversion Process of Deoxypodophyllotoxin withLinum flavumCell Cultures. Planta Medica, 2003, 69, 739-744.	1.3	21
174	Lignan Profiles of Indoor-CultivatedAnthriscus sylvestris. Planta Medica, 2003, 69, 959-961.	1.3	9
175	Selective Contribution of the Twin-Arginine Translocation Pathway to Protein Secretion in Bacillus subtilis. Journal of Biological Chemistry, 2002, 277, 44068-44078.	3.4	113
176	Altering the Substrate Specificity of Cephalosporin Acylase by Directed Evolution of the \hat{l}^2 -Subunit. Journal of Biological Chemistry, 2002, 277, 42121-42127.	3.4	57
177	Thiol-Disulfide Oxidoreductases Are Essential for the Production of the Lantibiotic Sublancin 168. Journal of Biological Chemistry, 2002, 277, 16682-16688.	3.4	101
178	Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. Journal of Biotechnology, 2002, 98, 243-254.	3.8	62
179	Phage display selects for amylases with improved low pH starch-binding. Journal of Biotechnology, 2002, 96, 103-118.	3.8	29
180	The bdbDC Operon of Bacillus subtilisEncodes Thiol-disulfide Oxidoreductases Required for Competence Development. Journal of Biological Chemistry, 2002, 277, 6994-7001.	3.4	85

#	Article	IF	Citations
181	Directed evolution of a glutaryl acylase into an adipyl acylase. FEBS Journal, 2002, 269, 4495-4504.	0.2	44
182	Immobilization of chiral enzyme inhibitors on solid supports by amide-forming coupling and olefin metathesis. Tetrahedron, 2002, 58, 8465-8473.	1.9	26
183	Volatile components from Anthriscus sylvestris (L.) Hoffm Journal of Chromatography A, 2002, 966, 233-238.	3.7	34
184	Characterization of the promoter and upstream activating sequence from the Pseudomonas alcaligenes lipase gene. Journal of Biotechnology, 2001, 86, 9-17.	3.8	17
185	Paralogous gene analysis reveals a highly enantioselective 1,2-O-isopropylideneglycerol caprylate esterase ofBacillus subtilis. FEBS Journal, 2001, 268, 3332-3338.	0.2	30
186	A Fast and Simple GC MS Method for Lignan Profiling in Anthriscus sylvestris and Biosynthetically Related Plant Species. Planta Medica, 2001, 67, 858-862.	1.3	41
187	Seasonal Variation of Artemisinin and its Biosynthetic Precursors in Plants of Artemisia annua of Different Geographical Origin: Proof for the Existence of Chemotypes. Planta Medica, 2000, 66, 57-62.	1.3	262
188	Functional Identification of the Product of the <i>Bacillus subtilis yvaL</i> Gene as a SecG Homologue. Journal of Bacteriology, 1999, 181, 1786-1792.	2.2	37
189	Seasonal Variations of Artemisinin and its Biosynthetic Precursors in Tetraploid Artemisia annua Plants Compared with the Diploid Wild-Type. Planta Medica, 1999, 65, 723-728.	1.3	79
190	Functional Analysis of Paralogous Thiol-disulfide Oxidoreductases in Bacillus subtilis. Journal of Biological Chemistry, 1999, 274, 24531-24538.	3.4	85
191	Improving protein secretion by engineering components of the bacterial translocation machinery. Current Opinion in Biotechnology, 1999, 10, 376-381.	6.6	38
192	Isolation and Identification of Dihydroartemisinic Acid fromArtemisia annuaand Its Possible Role in the Biosynthesis of Artemisinin. Journal of Natural Products, 1999, 62, 430-433.	3.0	131
193	Isolation and Identification of Dihydroartemisinic Acid Hydroperoxide fromArtemisia annua:Â A Novel Biosynthetic Precursor of Artemisinin. Journal of Natural Products, 1999, 62, 1160-1162.	3.0	102
194	Processing and functional display of the 86ÂkDa heterodimeric penicillin G acylase on the surface of phage fd. Biochemical Journal, 1999, 342, 415-422.	3.7	25
195	Processing and functional display of the 86ÂkDa heterodimeric penicillin G acylase on the surface of phage fd. Biochemical Journal, 1999, 342, 415.	3.7	17
196	Des bactéries naturelles pour laver plus blane. Biofutur, 1998, 1998, 90-91.	0.0	2
197	The phenotype enhancement method identifies the Xcp outer membrane secretion machinery from Pseudomonas alcaligenes as a bottleneck for lipase production. Journal of Biotechnology, 1998, 64, 23-38.	3.8	44
198	Alzheimer tau test and detergent cellulase. Journal of Biotechnology, 1998, 66, 229-233.	3.8	14

#	Article	IF	Citations
199	Functional analysis of the secretory precursor processing machinery of <i>Bacillus subtilis</i> :â€fidentification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes and Development, 1998, 12, 2318-2331.	5.9	159
200	SecDF of Bacillus subtilis, a Molecular Siamese Twin Required for the Efficient Secretion of Proteins. Journal of Biological Chemistry, 1998, 273, 21217-21224.	3.4	123
201	Development of a Lipase Fermentation Process That Uses a Recombinant Pseudomonas alcaligenes Strain. Applied and Environmental Microbiology, 1998, 64, 2644-2651.	3.1	55
202	Merits of secretion of heterologous proteins from industrial microorganisms. Folia Microbiologica, 1997, 42, 99-103.	2.3	24
203	Thermostable glucose isomerases. Trends in Food Science and Technology, 1993, 4, 31-34.	15.1	27
204	Production of Active Bacillus licheniformis Alpha-Amylase in Tobacco and its Application in Starch Liquefaction. Nature Biotechnology, 1992, 10, 292-296.	17.5	74
205	Efficient production of active industrial enzymes in plants. Industrial Crops and Products, 1992, 1, 241-250.	5.2	11
206	Enhancing the Thermostability of Glucose Isomerase by Protein Engineering. Nature Biotechnology, 1991, 9, 738-742.	17.5	49
207	Organization and Expression of the Vimentin and Desmin Genes. , 1986, , 109-130.		0
208	Complete structure of the alpha B-crystallin gene: conservation of the exon-intron distribution in the two nonlinked alpha-crystallin genes Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 5819-5823.	7.1	136
209	Vimentin and Desmin cDNA Clones: Structural Aspects of Corresponding Proteins and Genes. Annals of the New York Academy of Sciences, 1985, 455, 95-105.	3.8	8
210	Complete structure of the hamster αA crystallin gene. Journal of Molecular Biology, 1985, 185, 273-284.	4.2	76
211	The human desmin and vimentin genes are located on different chromosomes. Gene, 1985, 38, 189-196.	2.2	50
212	Characterization of the hamster desmin gene: Expression and formation of desmin filaments in nonmuscle cells after gene transfer. Cell, 1985, 43, 327-338.	28.9	126
213	Bovine β-crystallin complementary DNA clones. Journal of Molecular Biology, 1984, 180, 457-472.	4.2	70
214	Intermediate filament cDNAs from BHK-21 cells: demonstration of distinct genes for desmin and vimentin in all vertebrate classes Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5970-5974.	7.1	44
215	Organization and expression of the vimentin gene. Molecular Biology Reports, 1983, 9, 115-118.	2.3	3
216	The structure of the vimentin gene. Cell, 1983, 35, 215-223.	28.9	255

#	Article	IF	CITATIONS
217	Primary and secondary structure of hamster vimentin predicted from the nucleotide sequence Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 3548-3552.	7.1	125
218	Genes Coding for Vimentin and Actin in Mammals and Birds. Advances in Experimental Medicine and Biology, 1982, 158, 349-357.	1.6	4
219	Breeding of Medicinal Plants. , 0, , 417-449.		1
220	Fontmatter., 0,, I-XLII.		0
221	In-Vitro Culturing Techniques of Medicinal Plants. , 0, , 157-185.		3
222	Plant Cell Cultures: Production of Biologically Important Secondary Metabolites from Medicinal Plants of Taiwan., 0,, 267-285.		6
223	Bioprospecting: The Search for Bioactive Lead Structures from Nature. , 0, , 97-116.		3
224	Production of Paclitaxel in Plant Cell Cultures. , 0, , 515-528.		0
225	Towards Metabolic Engineering of Podophyllotoxin Production. , O, , .		5
226	Glycosylation of Recombinant Proteins in Plan., 0,, 345-374.		4
227	Plant Biochemistry and Biotechnology of Flavor Compounds and Essential Oils., 0,, 469-492.		4
228	Insights into the structure-function relations of amorpha-4,11-diene synthase. Biotarget, 0, 2, 1-1.	0.5	0