Christopher Kochanek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/486714/publications.pdf

Version: 2024-02-01

335 papers

29,253 citations

4658 85 h-index 157 g-index

338 all docs 338 docs citations

338 times ranked

11988 citing authors

#	Article	IF	CITATIONS
1	SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS. Astronomical Journal, 2011, 142, 72.	4.7	1,700
2	THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617. Astrophysical Journal, 2014, 788, 48.	4.5	1,277
3	THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2011, 193, 29.	7.7	1,166
4	Midâ€Infrared Selection of Active Galaxies. Astrophysical Journal, 2005, 631, 163-168.	4.5	788
5	The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publications of the Astronomical Society of the Pacific, 2017, 129, 104502.	3.1	780
6	MODELING THE TIME VARIABILITY OF SDSS STRIPE 82 QUASARS AS A DAMPED RANDOM WALK. Astrophysical Journal, 2010, 721, 1014-1033.	4.5	488
7	Direct Detection of Cold Dark Matter Substructure. Astrophysical Journal, 2002, 572, 25-33.	4.5	476
8	The tidal disruption of a star by a massive black hole. Astrophysical Journal, 1989, 346, L13.	4.5	426
9	HOST GALAXIES, CLUSTERING, EDDINGTON RATIOS, AND EVOLUTION OF RADIO, X-RAY, AND INFRARED-SELECTED AGNs. Astrophysical Journal, 2009, 696, 891-919.	4.5	407
10	TheKâ€Band Galaxy Luminosity Function. Astrophysical Journal, 2001, 560, 566-579.	4.5	384
11	Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts. Astrophysical Journal, 2006, 649, 616-634.	4.5	352
12	Black Hole Masses and Eddington Ratios at 0.3 <z< 128-139.<="" 2006,="" 4.="" 648,="" astrophysical="" journal,="" td=""><td>4.5</td><td>351</td></z<>	4.5	351
13	Is There a Cosmological Constant?. Astrophysical Journal, 1996, 466, 638.	4.5	332
14	MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE <i>WIDE-FIELD INFRARED SURVEY EXPLORER </i> . II. PROPERTIES OF <i>WISE </i> . SELECTED ACTIVE GALACTIC NUCLEI IN THE NDWFS BO×TES FIELD. Astrophysical Journal, 2013, 772, 26.	4.5	316
15	UBVRILight Curves of 44 Type la Supernovae. Astronomical Journal, 2006, 131, 527-554.	4.7	302
16	AN ALTERNATIVE APPROACH TO MEASURING REVERBERATION LAGS IN ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2011, 735, 80.	4.5	291
17	THE QUASAR ACCRETION DISK SIZE-BLACK HOLE MASS RELATION. Astrophysical Journal, 2010, 712, 1129-1136.	4.5	271
18	QUANTIFYING QUASAR VARIABILITY AS PART OF A GENERAL APPROACH TO CLASSIFYING CONTINUOUSLY VARYING SOURCES. Astrophysical Journal, 2010, 708, 927-945.	4. 5	267

#	Article	IF	CITATIONS
19	The ASAS-SN catalogue of variable stars I: The Serendipitous Survey. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3145-3163.	4.4	258
20	Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2918-2935.	4.4	252
21	LOW-RESOLUTION SPECTRAL TEMPLATES FOR ACTIVE GALACTIC NUCLEI AND GALAXIES FROM 0.03 TO 30 μm. Astrophysical Journal, 2010, 713, 970-985.	4.5	251
22	IS QUASAR OPTICAL VARIABILITY A DAMPED RANDOM WALK?. Astrophysical Journal, 2013, 765, 106.	4.5	250
23	The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4968-4981.	4.4	235
24	Shear and Ellipticity in Gravitational Lenses. Astrophysical Journal, 1997, 482, 604-620.	4.5	227
25	Quantitative Interpretation of Quasar Microlensing Light Curves. Astrophysical Journal, 2004, 605, 58-77.	4.5	227
26	A Survey About Nothing: Monitoring a Million Supergiants for Failed Supernovae. Astrophysical Journal, 2008, 684, 1336-1342.	4.5	226
27	usepackage{amsfonts} usepackage{amssymb} usepackage{bm} usepackage{mathrsfs} usepackage{pifont} usepackage{stmaryrd} usepackage{textcomp} usepackage{portland,xspace} usepackage{amsmath,amsxtra} usepackage[OT2,OT1]{fontenc} ewcommandcyr{ enewcommandmdefault{wncyr}	4.5	219
28	A DESCRIPTION OF QUASAR VARIABILITY MEASURED USING REPEATED SDSS AND POSS IMAGING. Astrophysical Journal, 2012, 753, 106.	4. 5	218
29	SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. II. <i>SWIFT</i> AND <i>HST</i> REVERBERATION MAPPING OF THE ACCRETION DISK OF NGC 5548. Astrophysical Journal, 2015, 806, 129.	4.5	216
30	ASASSN-14ae: a tidal disruption event at 200 Mpc. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3263-3277.	4.4	205
31	SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. III. OPTICAL CONTINUUM EMISSION AND BROADBAND TIME DELAYS IN NGC 5548. Astrophysical Journal, 2016, 821, 56.	4. 5	200
32	THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE. Astrophysical Journal, 2011, 738, 154.	4.5	198
33	THE SIZES OF THE X-RAY AND OPTICAL EMISSION REGIONS OF RXJ 1131-1231. Astrophysical Journal, 2010, 709, 278-285.	4. 5	194
34	The Optical Properties of Gravitational Lens Galaxies as a Probe of Galaxy Structure and Evolution. Astrophysical Journal, 1998, 509, 561-578.	4.5	186
35	Hubble Space TelescopeObservations of 10 Twoâ€lmage Gravitational Lenses. Astrophysical Journal, 2000, 536, 584-605.	4.5	185
36	THE <i>>SPITZER</i> DEEP, WIDE-FIELD SURVEY. Astrophysical Journal, 2009, 701, 428-453.	4.5	183

#	Article	IF	CITATIONS
37	A noninteracting low-mass black hole–giant star binary system. Science, 2019, 366, 637-640.	12.6	182
38	Discovery of the Dust-Enshrouded Progenitor of SN 2008S with <i>Spitzer</i> . Astrophysical Journal, 2008, 681, L9-L12.	4.5	180
39	REVERBERATION MAPPING RESULTS FOR FIVE SEYFERT 1 GALAXIES. Astrophysical Journal, 2012, 755, 60.	4.5	178
40	OBSERVING THE NEXT GALACTIC SUPERNOVA. Astrophysical Journal, 2013, 778, 164.	4.5	178
41	ASASSN-15lh: A highly super-luminous supernova. Science, 2016, 351, 257-260.	12.6	172
42	The aftermath of tidal disruption: The dynamics of thin gas streams. Astrophysical Journal, 1994, 422, 508.	4.5	169
43	THE STRUCTURE OF THE BROAD-LINE REGION IN ACTIVE GALACTIC NUCLEI. I. RECONSTRUCTED VELOCITY-DELAY MAPS. Astrophysical Journal, 2013, 764, 47.	4.5	168
44	The Sloan Digital Sky Survey Reverberation Mapping Project: $H\hat{l}_{\pm}$ and $H\hat{l}^2$ Reverberation Measurements from First-year Spectroscopy and Photometry. Astrophysical Journal, 2017, 851, 21.	4.5	168
45	A NEW CLASS OF LUMINOUS TRANSIENTS AND A FIRST CENSUS OF THEIR MASSIVE STELLAR PROGENITORS. Astrophysical Journal, 2009, 705, 1364-1384.	4.5	167
46	Tests for Substructure in Gravitational Lenses. Astrophysical Journal, 2004, 610, 69-79.	4. 5	166
47	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: TECHNICAL OVERVIEW. Astrophysical Journal, Supplement Series, 2015, 216, 4.	7.7	151
48	THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT $\hat{a}^{-1}/40.5$. Astrophysical Journal, 2012, 744, 41.	4.5	146
49	The Cow: Discovery of a Luminous, Hot, and Rapidly Evolving Transient. Astrophysical Journal Letters, 2018, 865, L3.	8.3	146
50	What Do Gravitational Lens Time Delays Measure?. Astrophysical Journal, 2002, 578, 25-32.	4.5	143
51	AGES: THE AGN AND GALAXY EVOLUTION SURVEY. Astrophysical Journal, Supplement Series, 2012, 200, 8.	7.7	142
52	The Time Delays of Gravitational Lens HE 0435â^1223: An Earlyâ€Type Galaxy with a Rising Rotation Curve. Astrophysical Journal, 2006, 640, 47-61.	4.5	141
53	X-RAY MICROLENSING IN RXJ1131-1231 AND HE1104-1805. Astrophysical Journal, 2009, 693, 174-185.	4.5	141
54	XBootes: An Xâ€Ray Survey of the NDWFS Bootes Field. I. Overview and Initial Results. Astrophysical Journal, Supplement Series, 2005, 161, 1-8.	7.7	136

#	Article	IF	CITATIONS
55	The Evolution and Structure of Earlyâ€Type Field Galaxies: A Combined Statistical Analysis of Gravitational Lenses. Astrophysical Journal, 2005, 623, 666-682.	4.5	136
56	SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA. Astrophysical Journal, 2016, 826, 39.	4.5	133
57	BLACK HOLE MASS ESTIMATES BASED ON C IV ARE CONSISTENT WITH THOSE BASED ON THE BALMER LINES. Astrophysical Journal, 2011, 742, 93.	4.5	132
58	THE STRUCTURE OF THE X-RAY AND OPTICAL EMITTING REGIONS OF THE LENSED QUASAR Q 2237+0305. Astrophysical Journal, 2013, 769, 53.	4.5	131
59	ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3813-3828.	4.4	131
60	Selfâ€similar Models for the Mass Profiles of Earlyâ€Type Lens Galaxies. Astrophysical Journal, 2003, 595, 29-42.	4.5	129
61	The search for failed supernovae with the Large Binocular Telescope: first candidates. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3289-3305.	4.4	127
62	The Spatial Structure of an Accretion Disk. Astrophysical Journal, 2008, 673, 34-38.	4.5	125
63	THE SLOAN DIGITAL SKY SURVEY QUASAR LENS SEARCH. V. FINAL CATALOG FROM THE SEVENTH DATA RELEASE. Astronomical Journal, 2012, 143, 119.	4.7	123
64	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2013, 556, A22.	5.1	123
65	Evidence for dark matter in MG 1654+134. Astrophysical Journal, 1995, 445, 559.	4.5	123
66	XBootes: An Xâ€Ray Survey of the NDWFS Bootes Field. II. The Xâ€Ray Source Catalog. Astrophysical Journal, Supplement Series, 2005, 161, 9-20.	7.7	119
67	A Large Population of Midâ€Infrared–selected, Obscured Active Galaxies in the Bootes Field. Astrophysical Journal, 2007, 671, 1365-1387.	4.5	119
68	The ASAS-SN catalogue of variable stars III: variables in the southern <i>TESS</i> continuous viewing zone. Monthly Notices of the Royal Astronomical Society, 2019, 485, 961-971.	4.4	117
69	SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. I. ULTRAVIOLET OBSERVATIONS OF THE SEYFERT 1 GALAXY NGC 5548 WITH THE COSMIC ORIGINS SPECTROGRAPH ON (i) HUBBLE SPACE TELESCOPE (i). Astrophysical Journal, 2015, 806, 128.	4.5	116
70	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: FIRST BROAD-LINE HÎ ² AND Mg ii LAGS AT zÂ≳Â0.3 FROM SIX-MONTH SPECTROSCOPY. Astrophysical Journal, 2016, 818, 30.	4.5	116
71	The Importance of Einstein Rings. Astrophysical Journal, 2001, 547, 50-59.	4.5	115
72	ON THE BARYON FRACTIONS IN CLUSTERS AND GROUPS OF GALAXIES. Astrophysical Journal, 2010, 719, 119-125.	4.5	112

#	Article	IF	Citations
73	Energetic eruptions leading to a peculiar hydrogen-rich explosion of a massive star. Nature, 2017, 551, 210-213.	27.8	112
74	The ASAS-SN Catalog of Variable Stars II: $\langle i \rangle$ Uniform Classification of 412,000 Known Variables $\langle i \rangle$. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	109
75	Stellar mergers are common. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1319-1328.	4.4	107
76	THE MICROLENSING PROPERTIES OF A SAMPLE OF 87 LENSED QUASARS. Astrophysical Journal, 2011, 738, 96.	4.5	106
77	FAILED SUPERNOVAE EXPLAIN THE COMPACT REMNANT MASS FUNCTION. Astrophysical Journal, 2014, 785, 28.	4.5	105
78	Xâ∈Ray and Optical Microlensing in the Lensed Quasar PG 1115+080. Astrophysical Journal, 2008, 689, 755-761.	4.5	104
79	THE BOSS EMISSION-LINE LENS SURVEY. II. INVESTIGATING MASS-DENSITY PROFILE EVOLUTION IN THE SLACS+BELLS STRONG GRAVITATIONAL LENS SAMPLE. Astrophysical Journal, 2012, 757, 82.	4.5	104
80	Tidal disruption event demographics. Monthly Notices of the Royal Astronomical Society, 2016, 461, 371-384.	4.4	99
81	FURTHER EVIDENCE THAT QUASAR X-RAY EMITTING REGIONS ARE COMPACT: X-RAY AND OPTICAL MICROLENSING IN THE LENSED QUASAR Q J0158-4325. Astrophysical Journal, 2012, 756, 52.	4.5	98
82	THE SIZE OF THE NARROW-LINE-EMITTING REGION IN THE SEYFERT 1 GALAXY NGCÂ5548 FROM EMISSION-LINE VARIABILITY. Astrophysical Journal, 2013, 779, 109.	4.5	94
83	Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548. Astrophysical Journal, 2017, 837, 131.	4.5	93
84	ON ABSORPTION BY CIRCUMSTELLAR DUST, WITH THE PROGENITOR OF SN 2012aw AS A CASE STUDY. Astrophysical Journal, 2012, 759, 20.	4.5	92
85	The search for failed supernovae with the Large Binocular Telescope: constraints from 7Âyr of data. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1445-1455.	4.4	89
86	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: NO EVIDENCE FOR EVOLUTION IN THE \${{M}_{ullet }}-{{sigma }_{*}}\$ RELATION TO \$zsim 1\$. Astrophysical Journal, 2015, 805, 96.	4.5	88
87	Clusters of Galaxies in the Local Universe. Astrophysical Journal, 2003, 585, 161-181.	4.5	85
88	QUASAR SELECTION BASED ON PHOTOMETRIC VARIABILITY. Astrophysical Journal, 2011, 728, 26.	4.5	80
89	ASASSN-18ey: The Rise of a New Black Hole X-Ray Binary. Astrophysical Journal Letters, 2018, 867, L9.	8.3	80
90	X-ray/UV/optical variability of NGC 4593 with Swift: reprocessing of X-rays by an extended reprocessor. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2881-2897.	4.4	80

#	Article	IF	Citations
91	Reverberation Mapping of Optical Emission Lines in Five Active Galaxies. Astrophysical Journal, 2017, 840, 97.	4.5	79
92	The 1 <z 2006,="" 5="" 638,="" 88-99.<="" <="" astrophysical="" function="" i="" infrared="" journal,="" luminosity="" of="" quasars.="" td="" type=""><td>4.5</td><td>77</td></z>	4.5	77
93	TYPE Ia SINGLE DEGENERATE SURVIVORS MUST BE OVERLUMINOUS. Astrophysical Journal, 2013, 765, 150.	4.5	73
94	The ASAS-SN bright supernova catalogue – III. 2016. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4966-4981.	4.4	73
95	Cusped Mass Models of Gravitational Lenses. Astrophysical Journal, 2001, 558, 657-665.	4.5	73
96	Microlensing makes lensed quasar time delays significantly time variable. Monthly Notices of the Royal Astronomical Society, 2018, 473, 80-90.	4.4	72
97	Redshifts of the Gravitational Lenses MG 0414+0534 and MG 0751+2716. Astronomical Journal, 1999, 117, 2034-2038.	4.7	72
98	Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS. Astrophysical Journal, 2019, 883, 111.	4.5	71
99	THE MID-IR- AND X-RAY-SELECTED QSO LUMINOSITY FUNCTION. Astrophysical Journal, 2011, 728, 56.	4.5	70
100	A Mildly Relativistic Outflow from the Energetic, Fast-rising Blue Optical Transient CSS161010 in a Dwarf Galaxy. Astrophysical Journal Letters, 2020, 895, L23.	8.3	70
101	A unicorn in monoceros: the 3 M⊙ dark companion to the bright, nearby red giant V723 Mon is a non-interacting, mass-gap black hole candidate. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2577-2602.	4.4	70
102	REVERBERATION MAPPING OF THE SEYFERT 1 GALAXY NGC 7469. Astrophysical Journal, 2014, 795, 149.	4.5	69
103	GAMMA-RAYS FROM THE QUASAR PKS 1441+25: STORY OF AN ESCAPE. Astrophysical Journal Letters, 2015, 815, L22.	8.3	69
104	COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses. Astronomy and Astrophysics, 2008, 488, 481-490.	5.1	69
105	The Rewards of Patience: An 822 Day Time Delay in the Gravitational Lens SDSSÂJ1004+4112. Astrophysical Journal, 2008, 676, 761-766.	4.5	68
106	DUSTY EXPLOSIONS FROM DUSTY PROGENITORS: THE PHYSICS OF SN 2008S AND THE 2008 NGC 300-OT. Astrophysical Journal, 2011, 741, 37.	4.5	68
107	THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE*. Astrophysical Journal, 2016, 833, 264.	4.5	68
108	SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT.VI. REVERBERATING DISK MODELS FOR NGC 5548. Astrophysical Journal, 2017, 835, 65.	4.5	68

#	Article	IF	CITATIONS
109	PS18kh: A New Tidal Disruption Event with a Non-axisymmetric Accretion Disk. Astrophysical Journal, 2019, 880, 120.	4.5	68
110	Probing dark matter substructure in the gravitational lens HE 0435â^1223 with the WFC3 grism. Monthly Notices of the Royal Astronomical Society, 2017, 471, 2224-2236.	4.4	67
111	Seeing Double: ASASSN-18bt Exhibits a Two-component Rise in the Early-time K2 Light Curve. Astrophysical Journal, 2019, 870, 13.	4.5	67
112	MICROLENSING OF QUASAR BROAD EMISSION LINES: CONSTRAINTS ON BROAD LINE REGION SIZE. Astrophysical Journal, 2013, 764, 160.	4.5	66
113	TheChandraXBootes Survey. III. Optical and Nearâ€Infrared Counterparts. Astrophysical Journal, 2006, 641, 140-157.	4.5	65
114	Overconstrained gravitational lens models and the Hubble constant. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1725-1735.	4.4	65
115	A <i>SPITZER</i> /IRS SPECTRUM OF THE 2008 LUMINOUS TRANSIENT IN NGC 300: CONNECTION TO PROTO-PLANETARY NEBULAE. Astrophysical Journal, 2009, 705, 1425-1432.	4. 5	64
116	A STUDY OF CEPHEIDS IN M81 WITH THE LARGE BINOCULAR TELESCOPE (EFFICIENTLY CALIBRATED) Tj ETQq0	0 O ₄ .gBT /0	Overlock 10 T
117	Discovery and follow-up of ASASSN-19dj: an X-ray and UV luminous TDE in an extreme post-starburst galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1673-1696.	4.4	64
118	SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT. IV. ANOMALOUS BEHAVIOR OF THE BROAD ULTRAVIOLET EMISSION LINES IN NGC 5548. Astrophysical Journal, 2016, 824, 11.	4.5	63
119	Velocity-resolved Reverberation Mapping of Five Bright Seyfert 1 Galaxies. Astrophysical Journal, 2018, 866, 133.	4.5	63
120	A REVERBERATION LAG FOR THE HIGH-IONIZATION COMPONENT OF THE BROAD-LINE REGION IN THE NARROW-LINE SEYFERT 1 Mrk 335. Astrophysical Journal Letters, 2012, 744, L4.	8.3	62
121	UNMASKING THE SUPERNOVA IMPOSTORS. Astrophysical Journal, 2012, 758, 142.	4. 5	61
122	THE YOUNG AND BRIGHT TYPE IA SUPERNOVA ASASSN-14lp: DISCOVERY, EARLY-TIME OBSERVATIONS, FIRST-LIGHT TIME, DISTANCE TO NGC 4666, AND PROGENITOR CONSTRAINTS. Astrophysical Journal, 2016, 826, 144.	4. 5	61
123	A nova outburst powered by shocks. Nature Astronomy, 2017, 1, 697-702.	10.1	61
124	The Sloan Digital Sky Survey Reverberation Mapping Project: Estimating Masses of Black Holes in Quasars with Single-epoch Spectroscopy. Astrophysical Journal, 2020, 903, 112.	4.5	61
125	A ROBUST DETERMINATION OF THE SIZE OF QUASAR ACCRETION DISKS USING GRAVITATIONAL MICROLENSING. Astrophysical Journal, 2012, 751, 106.	4.5	60
126	Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a "Normal,―Massive, Metal-rich Spiral Galaxy. Astrophysical Journal, 2018, 853, 57.	4.5	60

#	Article	IF	CITATIONS
127	Investigation of Two Fermi-LAT Gamma-Ray Blazars Coincident with High-energy Neutrinos Detected by IceCube. Astrophysical Journal, 2019, 880, 103.	4.5	60
128	Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations. Astrophysical Journal, 2019, 870, 12.	4.5	60
129	The ASAS-SN catalogue of variable stars – V. Variables in the Southern hemisphere. Monthly Notices of the Royal Astronomical Society, 2020, 491, 13-28.	4.4	60
130	THE ASTROPHYSICAL IMPLICATIONS OF DUST FORMATION DURING THE ERUPTIONS OF HOT, MASSIVE STARS. Astrophysical Journal, 2011, 743, 73.	4.5	59
131	A Time Delay for the Clusterâ€lensed Quasar SDSS J1004+4112. Astrophysical Journal, 2007, 662, 62-71.	4.5	58
132	THE AVERAGE SIZE AND TEMPERATURE PROFILE OF QUASAR ACCRETION DISKS. Astrophysical Journal, 2014, 783, 47.	4.5	58
133	Direct evidence for shock-powered optical emission in a nova. Nature Astronomy, 2020, 4, 776-780.	10.1	58
134	THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY. Astrophysical Journal, 2015, 806, 111.	4.5	57
135	REVEALING THE STRUCTURE OF AN ACCRETION DISK THROUGH ENERGY-DEPENDENT X-RAY MICROLENSING. Astrophysical Journal, 2012, 757, 137.	4.5	56
136	Constraints on core collapse from the black hole mass function. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1213-1222.	4.4	55
137	THE BOSS EMISSION-LINE LENS SURVEY. III. STRONG LENSING OF Lyα EMITTERS BY INDIVIDUAL GALAXIES. Astrophysical Journal, 2016, 824, 86.	4.5	55
138	The ultraviolet spectroscopic evolution of the low-luminosity tidal disruption event iPTF16fnl. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1130-1144.	4.4	54
139	The Sloan Digital Sky Survey Reverberation Mapping Project: Mg iiÂLag Results from Four Years of Monitoring. Astrophysical Journal, 2020, 901, 55.	4.5	54
140	MICROLENSING EVIDENCE THAT A TYPE 1 QUASAR IS VIEWED FACE-ON. Astrophysical Journal, 2010, 712, 668-673.	4.5	53
141	A CONSISTENT PICTURE EMERGES: A COMPACT X-RAY CONTINUUM EMISSION REGION IN THE GRAVITATIONALLY LENSED QUASAR SDSS J0924+0219. Astrophysical Journal, 2015, 806, 258.	4.5	52
142	The ASAS-SN bright supernova catalogue – I. 2013–2014. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2672-2686.	4.4	52
143	Whimper of a Bang: Documenting the Final Days of the Nearby Type Ia Supernova 2011fe. Astrophysical Journal, 2017, 841, 48.	4.5	52
144	The unusual late-time evolution of the tidal disruption event ASASSN-150i. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5689-5703.	4.4	52

#	Article	IF	CITATIONS
145	C IV LINE-WIDTH ANOMALIES: THE PERILS OF LOW SIGNAL-TO-NOISE SPECTRA. Astrophysical Journal, 2013, 775, 60.	4.5	51
146	APPLICATION OF STOCHASTIC MODELING TO ANALYSIS OF PHOTOMETRIC REVERBERATION MAPPING DATA. Astrophysical Journal, 2016, 819, 122.	4.5	51
147	Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies. Astrophysical Journal, 2018, 854, 107.	4.5	51
148	Supernovae 2016bdu and 2005gl, and their link with SN 2009ip-like transients: another piece of the puzzle. Monthly Notices of the Royal Astronomical Society, 2018, 474, 197-218.	4.4	50
149	Constraints on HO from the Central Velocity Dispersions of Lens Galaxies. Astrophysical Journal, 1999, 516, 18-26.	4.5	50
150	The Castles Project. Astrophysics and Space Science, 1998, 263, 51-54.	1.4	49
151	A CONNECTION BETWEEN OBSCURATION AND STAR FORMATION IN LUMINOUS QUASARS. Astrophysical Journal, 2015, 802, 50.	4.5	49
152	Almost gone: SN 2008S and NGC 300 2008OT-1 are fainter than their progenitors. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1645-1657.	4.4	49
153	Abundance anomalies in tidal disruption events. Monthly Notices of the Royal Astronomical Society, 2016, 458, 127-134.	4.4	49
154	ASASSN-18tb: a most unusual Type Ia supernova observed by TESS and SALT. Monthly Notices of the Royal Astronomical Society, 2019, 487, 2372-2384.	4.4	49
155	AGN STORM 2. I. First results: A Change in the Weather of Mrk 817. Astrophysical Journal, 2021, 922, 151.	4.5	49
156	X-RAY MONITORING OF GRAVITATIONAL LENSES WITH <i>CHANDRA</i> . Astrophysical Journal, 2012, 755, 24.	4.5	48
157	THE TRANSVERSE PECULIAR VELOCITY OF THE Q2237+0305 LENS GALAXY AND THE MEAN MASS OF ITS STARS. Astrophysical Journal, 2010, 712, 658-667.	4.5	47
158	DETECTION OF SUBSTRUCTURE IN THE GRAVITATIONALLY LENSED QUASAR MG0414+0534 USING MID-INFRARED AND RADIO VLBI OBSERVATIONS. Astrophysical Journal, 2013, 773, 35.	4.5	47
159	DARK MATTER MASS FRACTION IN LENS GALAXIES: NEW ESTIMATES FROM MICROLENSING. Astrophysical Journal, 2015, 799, 149.	4.5	47
160	MID-INFRARED VARIABILITY FROM THE <i>SPITZER</i> DEEP WIDE-FIELD SURVEY. Astrophysical Journal, 2010, 716, 530-543.	4.5	46
161	Simulations of the OzDES AGN reverberation mapping project. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1701-1726.	4.4	46
162	First Resolution of Microlensed Images*. Astrophysical Journal, 2019, 871, 70.	4.5	45

#	Article	IF	CITATIONS
163	ASASSN-14ko is a Periodic Nuclear Transient in ESO 253-G003. Astrophysical Journal, 2021, 910, 125.	4.5	45
164	Midâ€IR Observations and a Revised Time Delay for the Gravitational Lens System Quasar HE 1104â^'1805. Astrophysical Journal, 2007, 660, 146-151.	4.5	44
165	Survey of period variations of superhumps in SUÂUMa-type dwarf novae. V. The fifth year (2012–2013). Publication of the Astronomical Society of Japan, 2014, 66, .	2.5	44
166	The Extinction Law in Highâ€Redshift Galaxies. Astrophysical Journal, 2004, 605, 614-619.	4.5	43
167	Microlensing of the Lensed Quasar SDSS 0924+0219. Astrophysical Journal, 2006, 647, 874-885.	4.5	43
168	Early Spectral Evolution of Classical Novae: Consistent Evidence for Multiple Distinct Outflows. Astrophysical Journal, 2020, 905, 62.	4.5	43
169	THE STRUCTURE OF THE ACCRETION DISK IN THE LENSED QUASAR SBS 0909+532. Astrophysical Journal, 2011, 730, 16.	4.5	42
170	A STUDY OF GRAVITATIONAL LENS CHROMATICITY USING GROUND-BASED NARROWBAND PHOTOMETRY. Astrophysical Journal, 2011, 728, 145.	4.5	42
171	CHARACTERIZING THE OPTICAL VARIABILITY OF BRIGHT BLAZARS: VARIABILITY-BASED SELECTION OF < i > FERMI < /i > ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2012, 760, 51.	4.5	42
172	CHARACTERIZING A DRAMATIC Δ <i>V</i> â^¼ –9 FLARE ON AN ULTRACOOL DWARF FOUND BY THE ASAS-SN SURVEY. Astrophysical Journal Letters, 2014, 781, L24.	8.3	42
173	Survey of period variations of superhumps in SU UMa-type dwarf novae. VII. The seventh year (2014 \hat{a} €"2015). Publication of the Astronomical Society of Japan, 2015, 67, .	2.5	42
174	The X-Ray and Mid-infrared Luminosities in Luminous Type 1 Quasars. Astrophysical Journal, 2017, 837, 145.	4.5	42
175	Nebular spectra of 111 Type Ia supernovae disfavour single-degenerate progenitors. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1044-1062.	4.4	42
176	Halo Structures of Gravitational Lens Galaxies. Astrophysical Journal, 2006, 642, 22-29.	4.5	41
177	THE OPTICAL, ULTRAVIOLET, AND X-RAY STRUCTURE OF THE QUASAR HE 0435–1223. Astrophysical Journal, 2014, 789, 125.	4.5	41
178	The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1428-1443.	4.4	41
179	The Rise and Fall of ASASSN-18pg: Following a TDE from Early to Late Times. Astrophysical Journal, 2020, 898, 161.	4.5	41
180	MUSE REVEALS A RECENT MERGER IN THE POST-STARBURST HOST GALAXY OF THE TDE ASASSN-14li. Astrophysical Journal Letters, 2016, 830, L32.	8.3	40

#	Article	IF	CITATIONS
181	Periodic eclipses of the young star PDS 110 discovered with WASP and KELT photometry. Monthly Notices of the Royal Astronomical Society, 2017, 471, 740-749.	4.4	40
182	ASASSN-16ae: A POWERFUL WHITE-LIGHT FLARE ON AN EARLY-L DWARF. Astrophysical Journal Letters, 2016, 828, L22.	8.3	40
183	Supernova progenitors, their variability and the Type IIP Supernova ASASSN-16fq in M66. Monthly Notices of the Royal Astronomical Society, 2017, 467, 3347-3360.	4.4	39
184	DETECTION OF A COMPANION LENS GALAXY USING THE MID-INFRARED FLUX RATIOS OF THE GRAVITATIONALLY LENSED QUASAR H1413+117. Astrophysical Journal, 2009, 699, 1578-1583.	4. 5	37
185	CENSUS OF SELF-OBSCURED MASSIVE STARS IN NEARBY GALAXIES WITH <i>SPITZER</i> : IMPLICATIONS FOR UNDERSTANDING THE PROGENITORS OF SN 2008S-LIKE TRANSIENTS. Astrophysical Journal, 2010, 715, 1094-1108.	4.5	37
186	Measuring the Innermost Stable Circular Orbits of Supermassive Black Holes. Astrophysical Journal, 2017, 837, 26.	4.5	37
187	The ASAS-SN bright supernova catalogue – IV. 2017. Monthly Notices of the Royal Astronomical Society, 2019, 484, 1899-1911.	4.4	37
188	The Xâ€Ray Properties of Optically Selected Galaxy Clusters. Astrophysical Journal, 2007, 658, 917-928.	4.5	37
189	Simultaneous Estimation of Time Delays and Quasar Structure. Astrophysical Journal, 2008, 676, 80-86.	4.5	36
190	A STUDY OF GRAVITATIONAL LENS CHROMATICITY WITH THE <i>HUBBLE SPACE TELESCOPE </i> Astrophysical Journal, 2011, 742, 67.	4.5	36
191	A TWO-YEAR TIME DELAY FOR THE LENSED QUASAR SDSS J1029+2623. Astrophysical Journal, 2013, 764, 186.	4.5	36
192	The Largest M Dwarf Flares from ASAS-SN. Astrophysical Journal, 2019, 876, 115.	4.5	36
193	Space Telescope and Optical Reverberation Mapping Project. IX. Velocity–Delay Maps for Broad Emission Lines in NGC 5548. Astrophysical Journal, 2021, 907, 76.	4.5	36
194	The search for failed supernovae with the Large Binocular Telescope: a new candidate and the failed SN fraction with 11Âyr of data. Monthly Notices of the Royal Astronomical Society, 2021, 508, 516-528.	4.4	35
195	MID-INFRARED GALAXY LUMINOSITY FUNCTIONS FROM THE AGN AND GALAXY EVOLUTION SURVEY. Astrophysical Journal, 2009, 697, 506-521.	4.5	34
196	A UV TO MID-IR STUDY OF AGN SELECTION. Astrophysical Journal, 2014, 790, 54.	4. 5	34
197	QUASAR VARIABILITY IN THE MID-INFRARED. Astrophysical Journal, 2016, 817, 119.	4.5	34
198	Space Telescope and Optical Reverberation Mapping Project. VIII. Time Variability of Emission and Absorption in NGC 5548 Based on Modeling the Ultraviolet Spectrum. Astrophysical Journal, 2019, 881, 153.	4. 5	34

#	Article	IF	Citations
199	To TDE or not to TDE: the luminous transient ASASSN-18jd with TDE-like and AGN-like qualities. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2538-2560.	4.4	34
200	The ASAS-SN catalogue of variable stars IX: The spectroscopic properties of Galactic variable stars. Monthly Notices of the Royal Astronomical Society, 2021, 503, 200-235.	4.4	34
201	DISCOVERY OF ENERGY-DEPENDENT X-RAY MICROLENSING IN Q2237+0305. Astrophysical Journal Letters, 2011, 740, L34.	8.3	33
202	Reconciling 56Ni production in Type Ia supernovae with double degenerate scenarios. Monthly Notices of the Royal Astronomical Society, 2014, 438, 3456-3464.	4.4	33
203	DISCOVERY AND OBSERVATIONS OF ASASSN-13db, AN EX LUPI-TYPE ACCRETION EVENT ON A LOW-MASS T TAURI STAR. Astrophysical Journal Letters, 2014, 785, L35.	8.3	33
204	Space Telescope and Optical Reverberation Mapping Project. VII. Understanding the Ultraviolet Anomaly in NGC 5548 with X-Ray Spectroscopy. Astrophysical Journal, 2017, 846, 55.	4.5	33
205	Quasar Accretion Disk Sizes from Continuum Reverberation Mapping in the DES Standard-star Fields. Astrophysical Journal, Supplement Series, 2020, 246, 16.	7.7	33
206	DIFFERENTIAL X-RAY ABSORPTION AND DUST-TO-GAS RATIOS OF THE LENS GALAXIES SBS 0909+523, FBQS 0951+2635, AND B 1152+199. Astrophysical Journal, 2009, 692, 677-683.	4.5	32
207	LOSS's first supernova? New limits on the â€~impostor' SN 1997bs. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2195-2207.	4.4	32
208	THE STRUCTURE OF HE 1104-1805 FROM INFRARED TO X-RAY. Astrophysical Journal, 2015, 798, 95.	4.5	32
209	PROBING THE DARK MATTER RADIAL PROFILE IN LENS GALAXIES AND THE SIZE OF X-RAY EMITTING REGION IN QUASARS WITH MICROLENSING. Astrophysical Journal, 2015, 806, 251.	4.5	32
210	Hello darkness my old friend: the fading of the nearby TDE ASASSN-14ae. Monthly Notices of the Royal Astronomical Society, 2016, 462, 3993-4000.	4.4	32
211	Where Is the Flux Going? The Long-term Photometric Variability of Boyajian's Star. Astrophysical Journal, 2018, 853, 77.	4.5	32
212	The ASAS-SN catalogue of variable stars VI: an all-sky sample of \hat{l} Scuti stars. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4186-4208.	4.4	32
213	Early-time Light Curves of Type Ia Supernovae Observed with TESS. Astrophysical Journal, 2021, 908, 51.	4.5	32
214	The Lens Galaxy in PG 1115+080 is an Ellipse. Astrophysical Journal, 2005, 626, 51-57.	4.5	31
215	STELLAR BINARY COMPANIONS TO SUPERNOVA PROGENITORS. Astrophysical Journal, 2009, 707, 1578-1587.	4.5	31
216	COSMOGRAIL. Astronomy and Astrophysics, 2019, 629, A97.	5.1	31

#	Article	IF	CITATIONS
217	The physics of flash (supernova) spectroscopy. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3762-3772.	4.4	31
218	TIME DELAY AND ACCRETION DISK SIZE MEASUREMENTS IN THE LENSED QUASAR SBS 0909+532 FROM MULTIWAVELENGTH MICROLENSING ANALYSIS. Astrophysical Journal, 2013, 774, 69.	4.5	30
219	Survey of period variations of superhumps in SU UMa-type dwarf novae. VIII. The eighth year (2015–2016). Publication of the Astronomical Society of Japan, 2016, 68, .	2.5	30
220	THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE. Astrophysical Journal, 2013, 770, 88.	4.5	29
221	The quiescent progenitors of four Type II-P/L supernovae. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	29
222	A Catalog of M-dwarf Flares with ASAS-SN. Astrophysical Journal, 2020, 892, 144.	4.5	29
223	Optical observations of the luminous Type IIn Supernova 2010jl for over 900Âd. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2622-2635.	4.4	27
224	Accretion Disk Size Measurement and Time Delays in the Lensed Quasar WFI 2033–4723. Astrophysical Journal, 2018, 869, 106.	4.5	27
225	The ASAS-SN catalogue of variable stars – VII. Contact binaries are different above and below the Kraft break. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4045-4057.	4.4	27
226	The Long Term Evolution of ASASSN-14li. Monthly Notices of the Royal Astronomical Society, 0, , stx033.	4.4	26
227	The ASAS-SN catalogue of variable stars – IV. Periodic variables in the APOGEE survey. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5932-5945.	4.4	26
228	On reverberation mapping lag uncertainties. Monthly Notices of the Royal Astronomical Society, 2020, 491, 6045-6064.	4.4	26
229	On the red supergiant problem. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4945-4949.	4.4	26
230	Overconstrained models of time delay lenses redux: how the angular tail wags the radial dog. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5021-5028.	4.4	26
231	Spectroscopic Confirmation of the Fifth Image of SDSS J1004+4112 and Implications for the $\langle i \rangle M \langle i \rangle BH - if^*$ Relation at $\langle i \rangle z \langle i \rangle = 0.68$. Publication of the Astronomical Society of Japan, 2008, 60, L27-L30.	2.5	25
232	Cas A and the Crab were not stellar binaries at death. Monthly Notices of the Royal Astronomical Society, 2018, 473, 1633-1643.	4.4	25
233	The relative specific Type Ia supernovae rate from three years of ASAS-SN. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3785-3796.	4.4	25
234	The LBT satellites of Nearby Galaxies Survey (LBT-SONG): the satellite population of NGC 628. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3854-3869.	4.4	25

#	Article	IF	CITATIONS
235	Analytic results for the gravitational lens statistics of singular isothermal spheres in general cosmologies. Monthly Notices of the Royal Astronomical Society, 1993, 261, 453-463.	4.4	24
236	NEW LIMITS ON GAMMA-RAY EMISSION FROM GALAXY CLUSTERS. Astrophysical Journal Letters, 2014, 795, L21.	8.3	24
237	The ASAS-SN Bright Supernova Catalog – II. 2015. Monthly Notices of the Royal Astronomical Society, 0, , stx057.	4.4	24
238	Stellar binaries that survive supernovae. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5394-5410.	4.4	24
239	OzDES Reverberation Mapping Programme: the first Mg <scp>ii</scp> lags from 5 yr of monitoring. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3771-3788.	4.4	24
240	High-cadence, early-time observations of core-collapse supernovae from the <i>TESS</i> prime mission. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5639-5656.	4.4	24
241	A significantly off-centre 56Ni distribution for the low-luminosity type la supernova SN 2016brx from the 100IAS survey. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 479, L70-L75.	3.3	23
242	The BOSS Emission-line Lens Survey. V. Morphology and Substructure of Lensed Lyl± Emitters at Redshift ZÂa‰^Â2.5 in the BELLS GALLERY. Astrophysical Journal, 2018, 853, 148.	4. 5	23
243	The search for failed supernovae with the Large Binocular Telescope: N6946-BH1, still no star. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1156-1164.	4.4	23
244	The Curious Case of ASASSN-20hx: A Slowly Evolving, UV- and X-Ray-Luminous, Ambiguous Nuclear Transient. Astrophysical Journal, 2022, 930, 12.	4.5	23
245	A NEW MICROLENSING EVENT IN THE DOUBLY IMAGED QUASAR Q 0957+561. Astrophysical Journal, 2012, 744, 104.	4.5	22
246	AN EXTREME ANALOGUE OF ϵ AURIGAE: AN M-GIANT ECLIPSED EVERY 69 YEARS BY A LARGE OPAQUE DISK SURROUNDING A SMALL HOT SOURCE. Astronomical Journal, 2016, 151, 123.	4.7	22
247	The 2014–2017 outburst of the young star ASASSN-13db. Astronomy and Astrophysics, 2017, 607, A127.	5.1	22
248	An extreme amplitude, massive heartbeat system in the LMC characterized using ASAS-SN and TESS. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4705-4711.	4.4	22
249	Examining a Peak-luminosity/Decline-rate Relationship for Tidal Disruption Events. Astrophysical Journal Letters, 2020, 894, L10.	8.3	22
250	Space Telescope and Optical Reverberation Mapping Project. XII. Broad-line Region Modeling of NGC 5548. Astrophysical Journal, 2020, 902, 74.	4. 5	22
251	The Mysterious Dimmings of the T Tauri Star V1334 Tau. Astrophysical Journal, 2017, 836, 209.	4.5	21
252	The Chandra Deep Wide-field Survey: A New Chandra Legacy Survey in the Boötes Field. I. X-Ray Point Source Catalog, Number Counts, and Multiwavelength Counterparts. Astrophysical Journal, Supplement Series, 2020, 251, 2.	7.7	21

#	Article	lF	CITATIONS
253	<i>SPITZER</i> POINT-SOURCE CATALOGS OF ~ 300,000 STARS IN SEVEN NEARBY GALAXIES. Astrophysical Journal, Supplement Series, 2015, 219, 42.	7.7	20
254	THE ERUPTION OF THE CANDIDATE YOUNG STAR ASASSN-15QI. Astrophysical Journal, 2016, 831, 133.	4.5	20
255	ASASSN-15nx: A Luminous Type II Supernova with a "Perfect―Linear Decline. Astrophysical Journal, 2018, 862, 107.	4.5	20
256	Progenitor, precursor, and evolution of the dusty remnant of the stellar merger M31-LRN-2015. Monthly Notices of the Royal Astronomical Society, 2020, 496, 5503-5517.	4.4	20
257	MICROLENSING OF QUASAR ULTRAVIOLET IRON EMISSION. Astrophysical Journal, 2013, 778, 123.	4.5	19
258	STRUCTURE OF THE ACCRETION DISK IN THE LENSED QUASAR Q2237+0305 FROM MULTI-EPOCH AND MULTI-WAVELENGTH NARROWBAND PHOTOMETRY. Astrophysical Journal, 2016, 817, 155.	4.5	19
259	The ASAS-SN catalogue of variable stars – VIII. â€~Dipper' stars in the Lupus star-forming region. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3257-3269.	4.4	19
260	The Analysis of Gravitational Lens Surveys. I. Selection Functions and Ambiguous Candidates. Astrophysical Journal, 1993, 417, 438.	4.5	19
261	ASASSN-15pz: Revealing Significant Photometric Diversity among 2009dc-like, Peculiar SNe la ^{â^—} . Astrophysical Journal, 2019, 880, 35.	4.5	18
262	THE EFFECT OF A TIME-VARYING ACCRETION DISK SIZE ON QUASAR MICROLENSING LIGHT CURVES. Astrophysical Journal, 2010, 718, 1079-1084.	4.5	17
263	Extended X-Ray Monitoring of Gravitational Lenses with Chandra and Joint Constraints on X-Ray Emission Regions. Astrophysical Journal, 2017, 836, 206.	4.5	17
264	The New EXor Outburst of ESO-Hα 99 Observed by Gaia ATLAS and TESS. Astronomical Journal, 2019, 158, 241.	4.7	17
265	THE CLUSTERING AND HALO MASSES OF STAR-FORMING GALAXIES AT <i>z</i> < 1. Astrophysical Journal, 2014, 797, 125.	4.5	16
266	THE TDE ASASSN-14li AND ITS HOST RESOLVED AT PARSEC SCALES WITH THE EVN. Astrophysical Journal Letters, 2016, 832, L10.	8.3	16
267	The Most Rapidly Declining Type I Supernova 2019bkc/ATLAS19dqr. Astrophysical Journal Letters, 2020, 889, L6.	8.3	16
268	High tide: a systematic search for ellipsoidal variables in ASAS-SN. Monthly Notices of the Royal Astronomical Society, 2021, 507, 104-115.	4.4	16
269	Cool, Luminous, and Highly Variable Stars in the Magellanic Clouds from ASAS-SN: Implications for Thorne–Żytkow Objects and Super-asymptotic Giant Branch Stars. Astrophysical Journal, 2020, 901, 135.	4.5	16
270	SN 2002bu—ANOTHER SN 2008S-LIKE TRANSIENT. Astrophysical Journal, 2012, 760, 20.	4.5	15

#	Article	IF	CITATIONS
271	SN 2019yvq Does Not Conform to SN Ia Explosion Models. Astrophysical Journal, 2021, 914, 50.	4.5	15
272	MASS FOLLOWS LIGHT., 2002, , .		15
273	Survey of period variations of superhumps in SU UMa-type dwarf novae. IX. The ninth year (2016–2017). Publication of the Astronomical Society of Japan, 2017, 69, .	2.5	14
274	On the progenitor of the Type Ibc supernova 2012fh. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3115-3119.	4.4	14
275	ASAS-SN search for optical counterparts of gravitational-wave events from the third observing run of Advanced LIGO/Virgo. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3427-3440.	4.4	14
276	FINDING Î- CAR ANALOGS IN NEARBY GALAXIES USING <i>SPITZER</i> . I. CANDIDATE SELECTION. Astrophysical Journal, 2013, 767, 52.	4.5	13
277	THE CLUSTERING OF EXTREMELY RED OBJECTS. Astrophysical Journal, 2013, 764, 31.	4.5	13
278	FINDING η CAR ANALOGS IN NEARBY GALAXIES USING <i>Spitzer</i> . II. IDENTIFICATION OF AN EMERGING CLASS OF EXTRAGALACTIC SELF-OBSCURED STARS. Astrophysical Journal, 2015, 799, 187.	4.5	13
279	Response to Comment on "A noninteracting low-mass black hole–giant star binary system― Science, 2020, 368, .	12.6	13
280	The case for strangulation in low-mass hosts: DDO 113. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1713-1730.	4.4	13
281	Signatures of bimodality in nebular phase Type Ia supernova spectra. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3553-3565.	4.4	13
282	The loudest stellar heartbeat: characterizing the most extreme amplitude heartbeat star system. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4083-4100.	4.4	13
283	Beyond Gaia: Asteroseismic Distances of M Giants Using Ground-based Transient Surveys. Astronomical Journal, 2020, 160, 18.	4.7	13
284	<i>OBJECT X</i> : THE BRIGHTEST MID-INFRARED POINT SOURCE IN M33. Astrophysical Journal, 2011, 732, 43.	4.5	12
285	REST-FRAME UV SINGLE-EPOCH BLACK HOLE MASS ESTIMATES OF LOW-LUMINOSITY AGNs AT INTERMEDIATE REDSHIFTS. Astrophysical Journal, 2015, 815, 128.	4.5	12
286	THE <i>SWIFT</i> AGN AND CLUSTER SURVEY. I. NUMBER COUNTS OF AGNs AND GALAXY CLUSTERS. Astrophysical Journal, Supplement Series, 2015, 218, 8.	7.7	12
287	Discovery of a Very Bright and Intrinsically Very Luminous, Strongly Lensed Lyl $$ ± Emitting Galaxy at z = 2.82 in the BOSS Emission-Line Lens Survey*. Astrophysical Journal Letters, 2017, 834, L18.	8.3	12
288	The highly luminous Type Ibn supernova ASASSN-14ms. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2344-2354.	4.4	12

#	Article	IF	CITATIONS
289	Strongly Bipolar Inner Ejecta of the Normal Type IIP Supernova ASASSN-16at. Astrophysical Journal Letters, 2019, 873, L3.	8.3	12
290	Classical Novae Masquerading as Dwarf Novae? Outburst Properties of Cataclysmic Variables with ASAS-SN. Astrophysical Journal, 2021, 910, 120.	4.5	12
291	The Changing-look Blazar B2 1420+32. Astrophysical Journal, 2021, 913, 146.	4.5	12
292	The Rapid X-Ray and UV Evolution of ASASSN-14ko. Astrophysical Journal, 2022, 926, 142.	4.5	12
293	A Rapid Ionization Change in the Nebular-phase Spectra of the Type Ia SN 2011fe. Astrophysical Journal Letters, 2022, 926, L25.	8.3	11
294	Using AGN light curves to map accretion disc temperature fluctuations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1046-1062.	4.4	11
295	Survey of period variations of superhumps in SUÂUMa-type dwarf novae. X. The tenth year (2017). Publication of the Astronomical Society of Japan, 2020, 72, .	2.5	10
296	A search for satellite galaxies of nearby star-forming galaxies with resolved stars in LBT-SONG. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4764-4778.	4.4	10
297	DM ORI: A YOUNG STAR OCCULTED BY A DISTURBANCE IN ITS PROTOPLANETARY DISK. Astrophysical Journal, 2016, 831, 74.	4.5	9
298	Dust formation and the binary companions of supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 471, 3283-3292.	4.4	9
299	An all-sky search for R Coronae Borealis stars in ASAS-SN. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4470-4478.	4.4	9
300	An AMUSING look at the host of the periodic nuclear transient ASASSN-14ko reveals a second AGN. Monthly Notices of the Royal Astronomical Society, 2021, 506, 6014-6028.	4.4	9
301	<i>V</i> -band photometry of asteroids from ASAS-SN. Astronomy and Astrophysics, 2021, 654, A48.	5.1	9
302	Galactic Extinction: How Many Novae Does It Hide and How Does It Affect the Galactic Nova Rate?. Astrophysical Journal, 2021, 922, 25.	4.5	9
303	Investigating the Nature of the Luminous Ambiguous Nuclear Transient ASASSN-17jz. Astrophysical Journal, 2022, 933, 196.	4.5	9
304	The extraplanar type II supernova ASASSN-14jb in the nearby edge-on galaxy ESO 467-G051. Astronomy and Astrophysics, 2019, 629, A57.	5.1	8
305	Supernovae producing unbound binaries and triples. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5832-5846.	4.4	8
306	The Rise and Peak of the Luminous Type IIn SN 2017hcc/ATLAS17lsn from ASAS-SN and Swift UVOT Data. Research Notes of the AAS, 2017, 1, 28.	0.7	8

#	Article	IF	CITATIONS
307	ASASSN-18di: Discovery of a Powerful Flare on a Mid-M Dwarf. Research Notes of the AAS, 2018, 2, 8.	0.7	8
308	Unveiling the Nature of SN 2011fh: A Young and Massive Star Gives Rise to a Luminous SN 2009ipâ^'like Event. Astrophysical Journal, 2022, 928, 138.	4.5	8
309	Results from the CASTLES survey of gravitational lenses. , 1999, , .		7
310	THE STRUCTURE OF 2MASS GALAXY CLUSTERS. Astrophysical Journal, 2012, 744, 76.	4.5	7
311	SNÂ2017ivv: two years of evolution of a transitional Type II supernova. Monthly Notices of the Royal Astronomical Society, 2020, 499, 974-992.	4.4	7
312	The Blue Supergiant Progenitor of the Supernova Imposter AT 2019krl. Astrophysical Journal, 2021, 917, 63.	4.5	7
313	Citizen ASAS-SN Data Release. I. Variable Star Classification Using Citizen Science. Publications of the Astronomical Society of the Pacific, 2022, 134, 024201.	3.1	7
314	The First Data Release of CNIa0.02—A Complete Nearby (Redshift <0.02) Sample of Type Ia Supernova Light Curves*. Astrophysical Journal, Supplement Series, 2022, 259, 53.	7.7	7
315	DISCOVERY OF FIVE CANDIDATE ANALOGS FOR <i>η</i> CARINAE IN NEARBY GALAXIES. Astrophysical Journal Letters, 2015, 815, L18.	8.3	6
316	OBSERVATIONS OF THE LENSED QUASAR Q2237+0305 WITH CANARICAM AT GTC. Astrophysical Journal, 2016, 831, 43.	4.5	6
317	ASASSN-18am/SNÂ2018gk: an overluminous Type IIb supernova from a massive progenitor. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3472-3491.	4.4	6
318	Variability Selected Active Galactic Nuclei from ASAS-SN Survey: Constraining the Low Luminosity AGN Population. Astrophysical Journal, 2022, 930, 110.	4.5	5
319	CDM Substructure in Gravitational Lenses: Tests and Results. AIP Conference Proceedings, 2003, , .	0.4	4
320	ASAS-SN Discovery of 4880 Bright RR Lyrae Variable Stars. Research Notes of the AAS, 2018, 2, 18.	0.7	4
321	ASAS-SN Identification of a Detached Eclipsing Binary System with a $\hat{A}\hat{a}^4\hat{A}$ 7.3 Year Period. Research Notes of the AAS, 2018, 2, 125.	0.7	3
322	The Sloan Digital Sky Survey Reverberation Mapping Project: Photometric <i>g</i> and <i>i</i> Light Curves. Astrophysical Journal, Supplement Series, 2020, 250, 10.	7.7	3
323	The progenitor of the Vela pulsar. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3428-3439.	4.4	3
324	Discovery of a highly eccentric, chromospherically active binary: ASASSN-V J192114.84+624950.8. Monthly Notices of the Royal Astronomical Society, 2022, 514, 200-207.	4.4	2

#	Article	IF	CITATIONS
325	Dynamical probes of the Halo Mass Function. , 2004, , 139-161.		1
326	THE $\langle i \rangle$ SWIFT $\langle i \rangle$ AGN AND CLUSTER SURVEY. II. CLUSTER CONFIRMATION WITH SDSS DATA. Astrophysical Journal, Supplement Series, 2016, 222, 13.	7.7	1
327	New Proper Motions of the Small Magellanic Cloud Using HST and Implications for Milky Way Mass. Proceedings of the International Astronomical Union, 2017, 13, 394-395.	0.0	1
328	Citizen ASAS-SN: Citizen Science with The All-Sky Automated Survey for SuperNovae (ASAS-SN). Research Notes of the AAS, 2021, 5, 38.	0.7	1
329	ASASSN-21co: A Detached Eclipsing Binary with an 11.9 yr Period. Research Notes of the AAS, 2021, 5, 147.	0.7	1
330	ASAS-SN Identification of FY Sct as a Detached Eclipsing Binary System with a 2.6 Years Period. Research Notes of the AAS, 2018, 2, 181.	0.7	1
331	A Technical Memorandum On Core Radii In Lens Statistics. Symposium - International Astronomical Union, 1996, 173, 7-12.	0.1	O
332	Gravitational Lenses and the Structure of Galaxies. Symposium - International Astronomical Union, 1996, 173, 177-182.	0.1	0
333	LBT Discovery of a Yellow Supergiant Eclipsing Binary in the Dwarf Galaxy Holmberg IX. Proceedings of the International Astronomical Union, 2007, 3, 333-338.	0.0	O
334	Quasar microlensing models with constraints on the Quasar light curves. Monthly Notices of the Royal Astronomical Society, 2018, 473, 616-620.	4.4	0
335	Optical Confirmation of X-Ray-selected Galaxy Clusters from the Swift AGN and Cluster Survey with MDM and Pan-STARRS Data. III. Astrophysical Journal, Supplement Series, 2022, 259, 9.	7.7	O