
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/486607/publications.pdf Version: 2024-02-01

Troluu

#	Article	IF	CITATIONS
1	High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. Journal of the American Chemical Society, 2016, 138, 375-380.	13.7	643
2	Singleâ€Junction Organic Solar Cells Based on a Novel Wideâ€Bandgap Polymer with Efficiency of 9.7%. Advanced Materials, 2015, 27, 2938-2944.	21.0	487
3	Fine-Tuning Energy Levels via Asymmetric End Groups Enables Polymer Solar Cells with Efficiencies over 17%. Joule, 2020, 4, 1236-1247.	24.0	344
4	A monothiophene unit incorporating both fluoro and ester substitution enabling high-performance donor polymers for non-fullerene solar cells with 16.4% efficiency. Energy and Environmental Science, 2019, 12, 3328-3337.	30.8	337
5	Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Science China Chemistry, 2020, 63, 325-330.	8.2	292
6	Precisely Controlling the Position of Bromine on the End Group Enables Wellâ€Regular Polymer Acceptors for Allâ€Polymer Solar Cells with Efficiencies over 15%. Advanced Materials, 2020, 32, e2005942.	21.0	282
7	Mechanically Robust All-Polymer Solar Cells from Narrow Band Gap Acceptors with Hetero-Bridging Atoms. Joule, 2020, 4, 658-672.	24.0	279
8	Optimized Fibril Network Morphology by Precise Sideâ€Chain Engineering to Achieve Highâ€Performance Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2018, 30, e1707353.	21.0	271
9	16.7%-efficiency ternary blended organic photovoltaic cells with PCBM as the acceptor additive to increase the open-circuit voltage and phase purity. Journal of Materials Chemistry A, 2019, 7, 20713-20722.	10.3	266
10	Use of two structurally similar small molecular acceptors enabling ternary organic solar cells with high efficiencies and fill factors. Energy and Environmental Science, 2018, 11, 3275-3282.	30.8	261
11	Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10%. Advanced Materials, 2016, 28, 10008-10015.	21.0	254
12	Fineâ€Tuning of Molecular Packing and Energy Level through Methyl Substitution Enabling Excellent Small Molecule Acceptors for Nonfullerene Polymer Solar Cells with Efficiency up to 12.54%. Advanced Materials, 2018, 30, 1706124.	21.0	253
13	Asymmetrical Ladderâ€Type Donorâ€Induced Polar Small Molecule Acceptor to Promote Fill Factors Approaching 77% for Highâ€Performance Nonfullerene Polymer Solar Cells. Advanced Materials, 2018, 30, e1800052.	21.0	252
14	16% efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend. Joule, 2021, 5, 914-930.	24.0	228
15	15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive. Energy and Environmental Science, 2020, 13, 2134-2141.	30.8	218
16	Alkyl Sideâ€Chain Engineering in Wideâ€Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Advanced Materials, 2017, 29, 1604251.	21.0	213
17	A nonfullerene acceptor with a 1000 nm absorption edge enables ternary organic solar cells with improved optical and morphological properties and efficiencies over 15%. Energy and Environmental Science, 2019, 12, 2529-2536.	30.8	213
18	A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency. Solar Rrl, 2017, 1, 1700044.	5.8	198

#	Article	IF	CITATIONS
19	Efficient All-Polymer Solar Cells based on a New Polymer Acceptor Achieving 10.3% Power Conversion Efficiency. ACS Energy Letters, 2019, 4, 417-422.	17.4	196
20	Adding a Third Component with Reduced Miscibility and Higher LUMO Level Enables Efficient Ternary Organic Solar Cells. ACS Energy Letters, 2020, 5, 2711-2720.	17.4	188
21	Concurrent improvement in <i>J</i> _{SC} and <i>V</i> _{OC} in high-efficiency ternary organic solar cells enabled by a red-absorbing small-molecule acceptor with a high LUMO level. Energy and Environmental Science, 2020, 13, 2115-2123.	30.8	164
22	Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency. Advanced Functional Materials, 2020, 30, 2000456.	14.9	164
23	Fine-tuning of side-chain orientations on nonfullerene acceptors enables organic solar cells with 17.7% efficiency. Energy and Environmental Science, 2021, 14, 3469-3479.	30.8	158
24	Highly Efficient Parallel-Like Ternary Organic Solar Cells. Chemistry of Materials, 2017, 29, 2914-2920.	6.7	152
25	Organic Solar Cells Based on a 2D Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]difuranâ€Conjugated Polymer with Highâ€Power Conversion Efficiency. Advanced Materials, 2015, 27, 6969-6975.	21.0	151
26	Ternary Organic Solar Cells Based on Two Highly Efficient Polymer Donors with Enhanced Power Conversion Efficiency. Advanced Energy Materials, 2016, 6, 1502109.	19.5	147
27	Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter, 2022, 5, 725-734.	10.0	145
28	Reduced Energy Loss Enabled by a Chlorinated Thiopheneâ€Fused Endingâ€Group Small Molecular Acceptor for Efficient Nonfullerene Organic Solar Cells with 13.6% Efficiency. Advanced Energy Materials, 2019, 9, 1900041.	19.5	144
29	Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nature Energy, 2022, 7, 229-237.	39.5	137
30	Altering alkyl-chains branching positions for boosting the performance of small-molecule acceptors for highly efficient nonfullerene organic solar cells. Science China Chemistry, 2020, 63, 361-369.	8.2	128
31	Chlorine Atom-Induced Molecular Interlocked Network in a Non-Fullerene Acceptor. ACS Applied Materials & Interfaces, 2018, 10, 39992-40000.	8.0	113
32	8.78% Efficient Allâ€Polymer Solar Cells Enabled by Polymer Acceptors Based on a Bâ†N Embedded Electronâ€Deficient Unit. Advanced Materials, 2019, 31, e1904585.	21.0	113
33	High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Letters, 2022, 7, 2547-2556.	17.4	109
34	Rational Anode Engineering Enables Progresses for Different Types of Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2100492.	19.5	108
35	Unconjugated Sideâ€Chain Engineering Enables Small Molecular Acceptors for Highly Efficient Nonâ€Fullerene Organic Solar Cells: Insights into the Fineâ€Tuning of Acceptor Properties and Micromorphology. Advanced Functional Materials, 2019, 29, 1902155.	14.9	105
36	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2020, 59, 19835-19840.	13.8	105

#	Article	IF	CITATIONS
37	Isomer-free: Precise Positioning of Chlorine-Induced Interpenetrating Charge Transfer for Elevated Solar Conversion. IScience, 2019, 17, 302-314.	4.1	103
38	Altering the Positions of Chlorine and Bromine Substitution on the End Group Enables Highâ€Performance Acceptor and Efficient Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002649.	19.5	103
39	Asymmetrical Small Molecule Acceptor Enabling Nonfullerene Polymer Solar Cell with Fill Factor Approaching 79%. ACS Energy Letters, 2018, 3, 1760-1768.	17.4	102
40	Modulation of End Groups for Lowâ€Bandgap Nonfullerene Acceptors Enabling Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1801203.	19.5	99
41	Achieving 16.68% efficiency ternary as-cast organic solar cells. Science China Chemistry, 2021, 64, 581-589.	8.2	99
42	Dopamine Semiquinone Radical Doped PEDOT:PSS: Enhanced Conductivity, Work Function and Performance in Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2000743.	19.5	97
43	Flexible Organic Solar Cells: Progress and Challenges. Small Science, 2021, 1, 2100001.	9.9	94
44	Allâ€polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate, 2022, 3, e58.	9.9	85
45	Sideâ€Chain Engineering on Yâ€Series Acceptors with Chlorinated End Groups Enables Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003777.	19.5	82
46	Achieving Efficient Ternary Organic Solar Cells Using Structurally Similar Nonâ€Fullerene Acceptors with Varying Flanking Side Chains. Advanced Energy Materials, 2021, 11, 2100079.	19.5	80
47	Nearâ€Infrared Small Molecule Acceptor Enabled Highâ€Performance Nonfullerene Polymer Solar Cells with Over 13% Efficiency. Advanced Functional Materials, 2018, 28, 1803128.	14.9	78
48	Highâ€Performance Nonâ€Fullerene Organic Solar Cells Based on a Seleniumâ€Containing Polymer Donor and a Twisted Perylene Bisimide Acceptor. Advanced Science, 2016, 3, 1600117.	11.2	76
49	High-Efficiency All-Polymer Solar Cells with Poly-Small-Molecule Acceptors Having π-Extended Units with Broad Near-IR Absorption. ACS Energy Letters, 2021, 6, 728-738.	17.4	74
50	lsomerization of Perylene Diimide Based Acceptors Enabling Highâ€Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor. Advanced Science, 2019, 6, 1802065.	11.2	69
51	Bromination: An Alternative Strategy for Nonâ€Fullerene Small Molecule Acceptors. Advanced Science, 2020, 7, 1903784.	11.2	69
52	Synergy of Liquidâ€Crystalline Smallâ€Molecule and Polymeric Donors Delivers Uncommon Morphology Evolution and 16.6% Efficiency Organic Photovoltaics. Advanced Science, 2020, 7, 2000149.	11.2	67
53	Heteroheptacene-based acceptors with thieno[3 <i>,</i> 2- <i>b</i>]pyrrole yield high-performance polymer solar cells. National Science Review, 2022, 9, .	9.5	67
54	Subtle Side-Chain Engineering of Random Terpolymers for High-Performance Organic Solar Cells. Chemistry of Materials, 2018, 30, 3294-3300.	6.7	64

#	Article	IF	CITATIONS
55	Understanding the Effect of End Group Halogenation in Tuning Miscibility and Morphology of Highâ€Performance Small Molecular Acceptors. Solar Rrl, 2020, 4, 2000250.	5.8	63
56	Bromination of the Small-Molecule Acceptor with Fixed Position for High-Performance Solar Cells. Chemistry of Materials, 2019, 31, 8044-8051.	6.7	62
57	Airâ€Processed Efficient Organic Solar Cells from Aromatic Hydrocarbon Solvent without Solvent Additive or Postâ€Treatment: Insights into Solvent Effect on Morphology. Energy and Environmental Materials, 2022, 5, 977-985.	12.8	59
58	Isomerization Strategy of Nonfullerene Smallâ€Molecule Acceptors for Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2004477.	14.9	58
59	Over 15% Efficiency Polymer Solar Cells Enabled by Conformation Tuning of Newly Designed Asymmetric Smallâ€Molecule Acceptors. Advanced Functional Materials, 2020, 30, 2000383.	14.9	55
60	Non-planar perylenediimide acceptors with different geometrical linker units for efficient non-fullerene organic solar cells. Journal of Materials Chemistry A, 2017, 5, 1713-1723.	10.3	54
61	Significantly Boosting Efficiency of Polymer Solar Cells by Employing a Nontoxic Halogen-Free Additive. ACS Applied Materials & amp; Interfaces, 2021, 13, 11117-11124.	8.0	54
62	Triphenylamine-cored star-shape compounds as non-fullerene acceptor for high-efficiency organic solar cells: Tuning the optoelectronic properties by S/Se-annulated perylene diimide. Organic Electronics, 2017, 41, 166-172.	2.6	51
63	A compatible polymer acceptor enables efficient and stable organic solar cells as a solid additive. Journal of Materials Chemistry A, 2020, 8, 17706-17712.	10.3	51
64	Dithieno[3,2â€ <i>b</i> :2ʹ,3ʹâ€ <i>d</i>]pyrrolâ€Fused Asymmetrical Electron Acceptors: A Study into the Effects of Nitrogenâ€Functionalization on Reducing Nonradiative Recombination Loss and Dipole Moment on Morphology. Advanced Science, 2020, 7, 1902657.	11.2	51
65	High-performance all-polymer solar cells enabled by a novel low bandgap non-fully conjugated polymer acceptor. Science China Chemistry, 2021, 64, 1380-1388.	8.2	51
66	Conformationâ€Tuning Effect of Asymmetric Small Molecule Acceptors on Molecular Packing, Interaction, and Photovoltaic Performance. Small, 2020, 16, e2001942.	10.0	49
67	Achieving Balanced Charge Transport and Favorable Blend Morphology in Non-Fullerene Solar Cells via Acceptor End Group Modification. Chemistry of Materials, 2019, 31, 1752-1760.	6.7	48
68	A 16.4% efficiency organic photovoltaic cell enabled using two donor polymers with their side-chains oriented differently by a ternary strategy. Journal of Materials Chemistry A, 2020, 8, 3676-3685.	10.3	48
69	Significantly improving the performance of polymer solar cells by the isomeric ending-group based small molecular acceptors: Insight into the isomerization. Nano Energy, 2019, 66, 104146.	16.0	47
70	Improving the performance of near infrared binary polymer solar cells by adding a second non-fullerene intermediate band-gap acceptor. Journal of Materials Chemistry C, 2020, 8, 909-915.	5.5	47
71	10.13% Efficiency Allâ€Polymer Solar Cells Enabled by Improving the Optical Absorption of Polymer Acceptors. Solar Rrl, 2020, 4, 2000142.	5.8	45
72	Thienobenzene-fused perylene bisimide as a non-fullerene acceptor for organic solar cells with a high open-circuit voltage and power conversion efficiency. Materials Chemistry Frontiers, 2017, 1, 749-756.	5.9	44

#	Article	IF	CITATIONS
73	Dithieno[3,2-b:2′,3′-d]pyridin-5(4H)-one based D–A type copolymers with wide bandgaps of up to 2.05 eV achieve solar cell efficiencies of up to 7.33%. Chemical Science, 2016, 7, 6167-6175.	' <u>to</u> 7.4	43
74	Medium band-gap non-fullerene acceptors based on a benzothiophene donor moiety enabling high-performance indoor organic photovoltaics. Energy and Environmental Science, 2021, 14, 4555-4563.	30.8	43
75	Alkoxy substitution on IDT-Series and Y-Series non-fullerene acceptors yielding highly efficient organic solar cells. Journal of Materials Chemistry A, 2021, 9, 7481-7490.	10.3	42
76	A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a <i>V</i> _{OC} over 1.0 V. Journal of Materials Chemistry C, 2018, 6, 1136-1142.	5.5	41
77	Overcoming the energy loss in asymmetrical non-fullerene acceptor-based polymer solar cells by halogenation of polymer donors. Journal of Materials Chemistry A, 2019, 7, 15404-15410.	10.3	39
78	Efficient modulation of end groups for the asymmetric small molecule acceptors enabling organic solar cells with over 15% efficiency. Journal of Materials Chemistry A, 2020, 8, 5927-5935.	10.3	39
79	Fine-tuning HOMO energy levels between PM6 and PBDB-T polymer donors via ternary copolymerization. Science China Chemistry, 2020, 63, 1256-1261.	8.2	38
80	A Highâ€Performance Nonâ€Fullerene Acceptor Compatible with Polymers with Different Bandgaps for Efficient Organic Solar Cells. Solar Rrl, 2019, 3, 1800376.	5.8	37
81	Simultaneously increasing open-circuit voltage and short-circuit current to minimize the energy loss in organic solar cells <i>via</i> designing asymmetrical non-fullerene acceptor. Journal of Materials Chemistry A, 2019, 7, 11053-11061.	10.3	37
82	Organic Solar Cells Based on WO2.72 Nanowire Anode Buffer Layer with Enhanced Power Conversion Efficiency and Ambient Stability. ACS Applied Materials & Interfaces, 2017, 9, 12629-12636.	8.0	33
83	Wide bandgap copolymers with vertical benzodithiophene dicarboxylate for high-performance polymer solar cells with an efficiency up to 7.49%. Journal of Materials Chemistry A, 2016, 4, 18792-18803.	10.3	30
84	ITCâ€2Cl: A Versatile Middleâ€Bandgap Nonfullerene Acceptor for Highâ€Efficiency Panchromatic Ternary Organic Solar Cells. Solar Rrl, 2020, 4, 1900377.	5.8	29
85	Improved organic solar cell efficiency based on the regulation of an alkyl chain on chlorinated non-fullerene acceptors. Materials Chemistry Frontiers, 2020, 4, 2428-2434.	5.9	27
86	Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Polymer Chemistry, 2016, 7, 4036-4045.	3.9	26
87	Regulating exciton bonding energy and bulk heterojunction morphology in organic solar cells <i>via</i> methyl-functionalized non-fullerene acceptors. Journal of Materials Chemistry A, 2019, 7, 6809-6817.	10.3	26
88	Pyreneâ€Fused Perylene Diimides: New Building Blocks to Construct Nonâ€Fullerene Acceptors With Extremely High Openâ€Circuit Voltages up to 1.26 V. Solar Rrl, 2017, 1, 1700123.	5.8	24
89	Reducing <scp><i>V</i>_{OC}</scp> loss via structure compatible and high <scp>lowest unoccupied molecular orbital</scp> nonfullerene acceptors for over 17%â€efficiency ternary organic photovoltaics. EcoMat, 2020, 2, e12061.	11.9	23
90	Efficient Organic Ternary Solar Cells Employing Narrow Band Gap Diketopyrrolopyrrole Polymers and Nonfullerene Acceptors. Chemistry of Materials, 2020, 32, 7309-7317.	6.7	22

#	Article	IF	CITATIONS
91	Non-fullerene acceptor engineering with three-dimensional thiophene/selenophene-annulated perylene diimides for high performance polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 12601-12607.	5.5	21
92	Chalcogenâ€Fused Perylene Diimidesâ€Based Nonfullerene Acceptors for Highâ€Performance Organic Solar Cells: Insight into the Effect of O, S, and Se. Solar Rrl, 2020, 4, 1900453.	5.8	21
93	Boosting Highly Efficient Hydrocarbon Solvent-Processed All-Polymer-Based Organic Solar Cells by Modulating Thin-Film Morphology. ACS Applied Materials & Interfaces, 2021, 13, 34301-34307.	8.0	20
94	Isomerization of Asymmetric Ladderâ€Type Heteroheptaceneâ€Based Smallâ€Molecule Acceptors Improving Molecular Packing: Efficient Nonfullerene Organic Solar Cells with Excellent Fill Factors. Advanced Functional Materials, 2022, 32, .	14.9	20
95	Alkyl Chain End Group Engineering of Small Molecule Acceptors for Non-Fullerene Organic Solar Cells. ACS Applied Energy Materials, 2018, 1, 4724-4730.	5.1	19
96	Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells. Journal of Materials Chemistry C, 2019, 7, 10901-10907.	5.5	19
97	Weak Makes It Powerful: The Role of Cognate Small Molecules as an Alloy Donor in 2D/1A Ternary Fullerene Solar Cells for Finely Tuned Hierarchical Morphology in Thick Active Layers. Small Methods, 2020, 4, 1900766.	8.6	19
98	Boosting the Efficiency of Non-fullerene Organic Solar Cells via a Simple Cathode Modification Method. ACS Applied Materials & amp; Interfaces, 2021, 13, 51078-51085.	8.0	19
99	Introducing an identical benzodithiophene donor unit for polymer donors and small-molecule acceptors to unveil the relationship between the molecular structure and photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 26351-26357.	10.3	18
100	Novel π-Conjugated Polymer Based on an Extended Thienoquinoid. Chemistry of Materials, 2018, 30, 319-323.	6.7	17
101	A new small molecule acceptor based on indaceno[2,1-b:6,5-b']dithiophene and thiophene-fused ending group for fullerene-free organic solar cells. Dyes and Pigments, 2018, 148, 263-269.	3.7	17
102	Fluorinated pyrazine-based D–A conjugated polymers for efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 7083-7089.	10.3	17
103	Tailoring the Morphology's Microevolution for Binary All-Polymer Solar Cells Processed by Aromatic Hydrocarbon Solvent with 16.22% Efficiency. ACS Applied Materials & Interfaces, 2022, 14, 29956-29963.	8.0	17
104	Pyran-annulated perylene diimide derivatives as non-fullerene acceptors for high performance organic solar cells. Journal of Materials Chemistry C, 2018, 6, 11111-11117.	5.5	16
105	Controlling Molecular Weight to Achieve Highâ€Efficient Polymer Solar Cells With Unprecedented Fill Factor of 79% Based on Nonâ€Fullerene Small Molecule Acceptor. Solar Rrl, 2018, 2, 1800129.	5.8	16
106	Thioether Bond Modification Enables Boosted Photovoltaic Performance of Nonfullerene Polymer Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 32218-32224.	8.0	16
107	A Nonâ€Conjugated Polymer Acceptor for Efficient and Thermally Stable Allâ€Polymer Solar Cells. Angewandte Chemie, 2020, 132, 20007-20012.	2.0	16
108	Ester side chains engineered quinoxaline based D-A copolymers for high-efficiency all-polymer solar cells. Chemical Engineering Journal, 2022, 429, 132551.	12.7	16

#	Article	IF	CITATIONS
109	Enhanced open-circuit voltage in methoxyl substituted benzodithiophene-based polymer solar cells. Science China Chemistry, 2017, 60, 243-250.	8.2	15
110	Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells. Chinese Journal of Polymer Science (English Edition), 2020, 38, 797-805.	3.8	15
111	Rational design of perylenediimide-based polymer acceptor for efficient all-polymer solar cells. Organic Electronics, 2017, 50, 376-383.	2.6	14
112	Multifunctional asymmetrical molecules for high-performance perovskite and organic solar cells. Journal of Materials Chemistry A, 2019, 7, 2412-2420.	10.3	14
113	Electro-spinning fabrication of nitrogen, phosphorus co-doped porous carbon nanofiber as an electro-chemiluminescent sensor for the determination of cyproheptadine. RSC Advances, 2020, 10, 23091-23096.	3.6	14
114	A Pyrroleâ€Fused Asymmetrical Electron Acceptor for Polymer Solar Cells with Approaching 16% Efficiency. Small Structures, 2021, 2, 2000052.	12.0	14
115	Simultaneously Enhanced Efficiency and Mechanical Durability in Ternary Solar Cells Enabled by Lowâ€Cost Incompletely Separated Fullerenes. Macromolecular Rapid Communications, 2022, 43, e2200139.	3.9	14
116	Influence of Fluorine Substitution on the Photovoltaic Performance of Wide Band Gap Polymer Donors for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 5740-5749.	8.0	13
117	Influence of 2,2-bithiophene and thieno[3,2-b] thiophene units on the photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Journal of Materials Chemistry C, 2017, 5, 4471-4479.	5.5	12
118	Side-chain engineering with chalcogen-containing heterocycles on non-fullerene acceptors for efficient organic solar cells. Chemical Engineering Journal, 2022, 441, 135998.	12.7	12
119	Realizing the efficiency-stability balance for all-polymer photovoltaic blends. Journal of Materials Chemistry C, 2022, 10, 9723-9729.	5.5	12
120	Synergy strategy to the flexible alkyl and chloride side-chain engineered quinoxaline-based D–A conjugated polymers for efficient non-fullerene polymer solar cells. Materials Chemistry Frontiers, 2021, 5, 1906-1916.	5.9	11
121	Functionalizing tetraphenylpyrazine with perylene diimides (PDIs) as high-performance nonfullerene acceptors. Journal of Materials Chemistry C, 2019, 7, 14563-14570.	5.5	9
122	Photovoltaic polymer Photosensitizer-Doped Nano-Therapeutic reagent for in vivo enhanced bioimaging guided photodynamic therapy. Chemical Engineering Journal, 2022, 441, 135983.	12.7	8
123	Tetrabromination versus Tetrachlorination: A Molecular Terminal Engineering of Nonfluorinated Acceptors to Control Aggregation for Highly Efficient Polymer Solar Cells with Increased V oc and Higher J sc Simultaneously. Solar Rrl, 2020, 4, 2000212.	5.8	5
124	Highly crystalline acceptor materials based on benzodithiophene with different amount of fluorine substitution on alkoxyphenyl conjugated side chains for organic photovoltaics. Materials Reports Energy, 2021, 1, 100059.	3.2	2