Ming-Cheng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4865231/publications.pdf

Version: 2024-02-01

32 papers 6,649 citations

236925 25 h-index 32 g-index

32 all docs

32 docs citations

times ranked

32

5978 citing authors

#	Article	IF	CITATIONS
1	Quantum computational advantage using photons. Science, 2020, 370, 1460-1463.	12.6	1,250
2	Single quantum emitters in monolayer semiconductors. Nature Nanotechnology, 2015, 10, 497-502.	31.5	749
3	On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar. Physical Review Letters, 2016, 116, 020401.	7.8	675
4	Quantum teleportation of multiple degrees of freedom of a single photon. Nature, 2015, 518, 516-519.	27.8	549
5	Strong Quantum Computational Advantage Using a Superconducting Quantum Processor. Physical Review Letters, 2021, 127, 180501.	7.8	491
6	High-efficiency multiphoton boson sampling. Nature Photonics, 2017, 11, 361-365.	31.4	330
7	Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mn>0</mml:mn><mml:mn>14</mml:mn><td>up^{7.8}/mm</td><td>l:må<mark>1</mark>8>-Dimer</td></mml:math>	up ^{7.8} /mm	l:må <mark>1</mark> 8>-Dimer
8	Towards optimal single-photon sources from polarized microcavities. Nature Photonics, 2019, 13, 770-775.	31.4	290
9	18-Qubit Entanglement with Six Photons' Three Degrees of Freedom. Physical Review Letters, 2018, 120, 260502.	7.8	274
10	Phase-Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. Physical Review Letters, 2021, 127, 180502.	7.8	208
11	Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science, 2021, 372, 948-952.	12.6	202
12	Entanglement-Based Machine Learning on a Quantum Computer. Physical Review Letters, 2015, 114, 110504.	7.8	158
13	Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter. Physical Review Letters, 2016, 116, 213601.	7.8	150
14	Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor. Physical Review Letters, 2019, 122, 110501.	7.8	136
15	Experimental Quantum Computing to Solve Systems of Linear Equations. Physical Review Letters, 2013, 110, 230501.	7.8	114
16	Quantum computational advantage via 60-qubit 24-cycle random circuit sampling. Science Bulletin, 2022, 67, 240-245.	9.0	114
17	Toward Scalable Boson Sampling with Photon Loss. Physical Review Letters, 2018, 120, 230502.	7.8	97
18	Observation of Topologically Protected Edge States in a Photonic Two-Dimensional Quantum Walk. Physical Review Letters, 2018, 121, 100502.	7.8	86

#	Article	lF	CITATION
19	Solving Systems of Linear Equations with a Superconducting Quantum Processor. Physical Review Letters, 2017, 118, 210504.	7.8	76
20	Indistinguishable Tunable Single Photons Emitted by Spin-Flip Raman Transitions in InGaAs Quantum Dots. Physical Review Letters, 2013, 111, 237403.	7.8	60
21	Quantum Image Processing and Its Application to Edge Detection: Theory and Experiment. Physical Review X, 2017, 7, .	8.9	59
22	Coherently driving a single quantum two-level system with dichromatic laser pulses. Nature Physics, 2019, 15, 941-946.	16.7	58
23	Quantum Interference between Light Sources Separated by 150 Million Kilometers. Physical Review Letters, 2019, 123, 080401.	7.8	57
24	Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor. Physical Review Letters, 2020, 125, 180501.	7.8	33
25	Ruling Out Real-Valued Standard Formalism of Quantum Theory. Physical Review Letters, 2022, 128, 040403.	7.8	31
26	Quantum teleportation of physical qubits into logical code spaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	21
27	Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator. Physical Review Letters, 2016, 116, 070502.	7.8	16
28	Quantum-Teleportation-Inspired Algorithm for Sampling Large Random Quantum Circuits. Physical Review Letters, 2020, 124, 080502.	7.8	14
29	Experimental demonstration of quantum pigeonhole paradox. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1549-1552.	7.1	13
30	Observation of Intensity Squeezing in Resonance Fluorescence from a Solid-State Device. Physical Review Letters, 2020, 125, 153601.	7.8	11
31	Cloning of Quantum Entanglement. Physical Review Letters, 2020, 125, 210502.	7.8	7
32	Directly Measuring a Multiparticle Quantum Wave Function via Quantum Teleportation. Physical Review Letters. 2021. 127. 030402.	7.8	7