Albertus Denny Handoko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4864927/publications.pdf

Version: 2024-02-01

60 papers

7,785 citations

36 h-index 57 g-index

62 all docs

62 docs citations

62 times ranked 9305 citing authors

#	Article	IF	CITATIONS
1	Highly Efficient Photocatalytic H ₂ Evolution from Water using Visible Light and Structureâ€Controlled Graphitic Carbon Nitride. Angewandte Chemie - International Edition, 2014, 53, 9240-9245.	13.8	1,000
2	Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts. ACS Catalysis, 2015, 5, 2814-2821.	11.2	741
3	<i>In Situ</i> Raman Spectroscopy of Copper and Copper Oxide Surfaces during Electrochemical Oxygen Evolution Reaction: Identification of Cu ^{III} Oxides as Catalytically Active Species. ACS Catalysis, 2016, 6, 2473-2481.	11.2	592
4	Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nature Catalysis, 2018, 1, 922-934.	34.4	515
5	Electrochemical Reduction of CO ₂ Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective Formation of Ethylene. ACS Catalysis, 2017, 7, 1749-1756.	11.2	507
6	Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion. ACS Nano, 2020, 14, 10834-10864.	14.6	349
7	Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) To Control Hydrogen Evolution Activity. ACS Applied Energy Materials, 2018, 1, 173-180.	5.1	304
8	Stable and selective electrochemical reduction of carbon dioxide to ethylene on copper mesocrystals. Catalysis Science and Technology, 2015, 5, 161-168.	4.1	292
9	Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Materials Today, 2018, 21, 749-770.	14.2	228
10	Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horizons, 2019, 4, 809-827.	8.0	218
11	Mechanistic Insights into the Enhanced Activity and Stability of Agglomerated Cu Nanocrystals for the Electrochemical Reduction of Carbon Dioxide to <i>n</i> -Propanol. Journal of Physical Chemistry Letters, 2016, 7, 20-24.	4.6	211
12	High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. Journal of Materials Chemistry A, 2018, 6, 4271-4278.	10.3	198
13	2H-MoS ₂ on Mo ₂ CT _{<i>x</i>} MXene Nanohybrid for Efficient and Durable Electrocatalytic Hydrogen Evolution. ACS Nano, 2020, 14, 16140-16155.	14.6	180
14	Self-gating in semiconductor electrocatalysis. Nature Materials, 2019, 18, 1098-1104.	27.5	167
15	Enhanced photoelectrochemical water splitting by nanostructured BiVO4–TiO2 composite electrodes. Journal of Materials Chemistry A, 2014, 2, 3948.	10.3	164
16	Mechanistic Insights into the Selective Electroreduction of Carbon Dioxide to Ethylene on Cu ₂ O-Derived Copper Catalysts. Journal of Physical Chemistry C, 2016, 120, 20058-20067.	3.1	164
17	On the Role of Sulfur for the Selective Electrochemical Reduction of CO ₂ to Formate on CuS _{<i>x</i>} Catalysts. ACS Applied Materials & Description of CO ₂ (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	8.0	157
18	Establishing new scaling relations on two-dimensional MXenes for CO ₂ electroreduction. Journal of Materials Chemistry A, 2018, 6, 21885-21890.	10.3	138

#	Article	IF	CITATIONS
19	Two-Dimensional Titanium and Molybdenum Carbide MXenes as Electrocatalysts for CO2 Reduction. IScience, 2020, 23, 101181.	4.1	123
20	Controllable proton and CO2 photoreduction over Cu2O with various morphologies. International Journal of Hydrogen Energy, 2013, 38, 13017-13022.	7.1	121
21	–CH ₃ Mediated Pathway for the Electroreduction of CO ₂ to Ethane and Ethanol on Thick Oxide-Derived Copper Catalysts at Low Overpotentials. ACS Energy Letters, 2017, 2, 2103-2109.	17.4	117
22	Rational Design of Sulfurâ€Doped Copper Catalysts for the Selective Electroreduction of Carbon Dioxide to Formate. ChemSusChem, 2018, 11, 320-326.	6.8	102
23	Recent progress in artificial photosynthesis: CO2 photoreduction to valuable chemicals in a heterogeneous system. Current Opinion in Chemical Engineering, 2013, 2, 200-206.	7.8	95
24	Catalytic Effect on CO ₂ Electroreduction by Hydroxyl-Terminated Two-Dimensional MXenes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36571-36579.	8.0	94
25	Photocatalytic reduction of CO ₂ and protons using water as an electron donor over potassium tantalate nanoflakes. Nanoscale, 2014, 6, 9767.	5. 6	83
26	One-Step Facile Synthesis of Cobalt Phosphides for Hydrogen Evolution Reaction Catalysts in Acidic and Alkaline Medium. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15673-15680.	8.0	76
27	Defectâ€Enhanced CO ₂ Reduction Catalytic Performance in Oâ€Terminated MXenes. ChemSusChem, 2020, 13, 5690-5698.	6.8	59
28	Interfacial charge separation in Cu ₂ O/RuO _x as a visible light driven CO ₂ reduction catalyst. Physical Chemistry Chemical Physics, 2014, 16, 5922-5926.	2.8	55
29	Transitionâ€Metalâ€Doped αâ€MnO ₂ Nanorods as Bifunctional Catalysts for Efficient Oxygen Reduction and Evolution Reactions. ChemistrySelect, 2018, 3, 2613-2622.	1.5	54
30	Enhanced activity of H2O2-treated copper(ii) oxide nanostructures for the electrochemical evolution of oxygen. Catalysis Science and Technology, 2016, 6, 269-274.	4.1	48
31	Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-Air batteries-driven overall water splitting. Energy Storage Materials, 2019, 23, 1-7.	18.0	48
32	A High-Performance Magnesium Triflate-based Electrolyte for Rechargeable Magnesium Batteries. Cell Reports Physical Science, 2020, 1, 100265.	5 . 6	48
33	Hydrothermal synthesis of sodium potassium niobate solid solutions at 200 °C. Green Chemistry, 2010, 12, 680.	9.0	46
34	Crystal structure and surface characteristics of Sr-doped GdBaCo ₂ O _{6â^î^(} double perovskites: oxygen evolution reaction and conductivity. Journal of Materials Chemistry A, 2018, 6, 5335-5345.	10.3	42
35	LCA of electrochemical reduction of CO2 to ethylene. Journal of CO2 Utilization, 2020, 41, 101229.	6.8	38
36	Recent Progress in Extending the Cycleâ€Life of Secondary Znâ€Air Batteries. ChemNanoMat, 2021, 7, 354-367.	2.8	37

#	Article	IF	CITATIONS
37	Selectivity Map for the Late Stages of CO and CO ₂ Reduction to C ₂ Species on Copper Electrodes. Angewandte Chemie - International Edition, 2021, 60, 10784-10790.	13.8	30
38	Hydrothermal synthesis of (001) epitaxial BiFeO3 films on SrTiO3 substrate. CrystEngComm, 2010, 12, 3806.	2.6	25
39	Dimensionally and compositionally controlled growth of calcium phosphate nanowires for bone tissue regeneration. Journal of Materials Chemistry B, 2013, 1, 6170.	5.8	24
40	High-performance & Department of the mally stable n-type polymer thermoelectrics based on a benzyl viologen radical cation-doped ladder-type conjugated polymer. Journal of Materials Chemistry A, 2021, 9, 11787-11793.	10.3	22
41	Hydrothermal growth of piezoelectrically active lead-free (Na,K)NbO ₃ –LiTaO ₃ thin films. CrystEngComm, 2013, 15, 672-678.	2.6	21
42	One-Dimensional Perovskite Nanostructures. Science of Advanced Materials, 2010, 2, 16-34.	0.7	20
43	Hydrothermal synthesis of epitaxial NaxK(1â^²x)NbO3 solid solution films. Thin Solid Films, 2011, 519, 5156-5160.	1.8	16
44	Piezoelectrically active hydrothermal KNbO3 thin films. CrystEngComm, 2012, 14, 421-427.	2.6	16
45	Sulfurized Cyclopentadienyl Nanocomposites for Shuttle-Free Room-Temperature Sodium–Sulfur Batteries. Nano Letters, 2021, 21, 10538-10546.	9.1	11
46	Elucidation of thermally induced internal porosity in zinc oxide nanorods. Nano Research, 2018, 11, 2412-2423.	10.4	10
47	Understanding the defect structure of solution grown zinc oxide. Journal of Solid State Chemistry, 2012, 189, 63-67.	2.9	9
48	Low temperature formation of (NaxK1â^'x)NbO3 from hydrothermally synthesised NaNbO3. Materials Research Innovations, 2011, 15, 352-356.	2.3	8
49	Probing the electronic and geometric structures of photoactive electrodeposited Cu2O films by X-ray absorption spectroscopy. Journal of Catalysis, 2020, 389, 483-491.	6.2	8
50	Thermoelectric Performances of n-Doped Ladder-Type Conjugated Polymers Using Various Viologen Radical Cations. ACS Applied Polymer Materials, 2021, 3, 5596-5603.	4.4	7
51	Hydrothermal epitaxy of BiFeO3 films on SrTiO3 substrates. Progress in Crystal Growth and Characterization of Materials, 2011, 57, 109-116.	4.0	5
52	Polaron Delocalization Dependence of the Conductivity and the Seebeck Coefficient in Doped Conjugated Polymers. Journal of Physical Chemistry B, 2022, 126, 2073-2085.	2.6	5
53	Electron n-doping of a highly electron-deficient chlorinated benzodifurandione-based oligophenylene vinylene polymer using benzyl viologen radical cations. Materials Chemistry Frontiers, 2021, 5, 6182-6191.	5.9	4
54	Time resolved emission spectroscopy investigations of pulsed laser ablated plasmas of ZrO2and Al2O3. Journal of Physics: Conference Series, 2006, 28, 100-104.	0.4	3

#	Article	IF	CITATIONS
55	Selectivity Map for the Late Stages of CO and CO 2 Reduction to C 2 Species on Copper Electrodes. Angewandte Chemie, 2021, 133, 10879-10885.	2.0	3
56	STRESS ANALYSIS OF (001) PREFERRED ORIENTED BiFeO ₃ AND Bi(Cr _{0.03} Fe _{0.97})O ₃ FILMS. Integrated Ferroelectrics, 2010, 113, 9-25.	0.7	1
57	Hydrothermal epitaxy of lead free (Na,K)NbO3-based piezoelectric films. Materials Research Society Symposia Proceedings, 2013, 1547, 45-52.	0.1	O
58	Outstanding Reviewers for <i>Materials Horizons</i> in 2019. Materials Horizons, 2020, 7, 1207-1207.	12.2	0
59	Hydrothermal synthesis of (K,Na)NbO3. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C594-C594.	0.3	O
60	Feasibility of CO2 Capture and Utilization: From the LCA Perspective., 2022,, 39-53.		0