Eun-Woo Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4864062/publications.pdf

Version: 2024-02-01

		201674	214800
55	2,435	27	47
papers	citations	h-index	g-index
57	57	57	3747
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structural and biochemical analysis of the PTPN4 PDZ domain bound to the C-terminal tail of the human papillomavirus E6 oncoprotein. Journal of Microbiology, 2022, 60, 395-401.	2.8	6
2	Plasma-activated medium induces ferroptosis by depleting FSP1 in human lung cancer cells. Cell Death and Disease, 2022, 13, 212.	6.3	45
3	GADD45 \hat{l}^2 Regulates Hepatic Gluconeogenesis via Modulating the Protein Stability of FoxO1. Biomedicines, 2021, 9, 50.	3.2	5
4	Myonectin inhibits adipogenesis in 3T3-L1 preadipocytes by regulating p38 MAPK pathway. BMB Reports, 2021, 54, 124-129.	2.4	14
5	Lipid Metabolism and Ferroptosis. Biology, 2021, 10, 184.	2.8	115
6	Mitochondrial Transplantation as a Novel Therapeutic Strategy for Mitochondrial Diseases. International Journal of Molecular Sciences, 2021, 22, 4793.	4.1	46
7	Multiple pathways of alveolar macrophage death contribute to pulmonary inflammation induced by silica nanoparticles. Nanotoxicology, 2021, 15, 1087-1101.	3.0	12
8	Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18. Molecules and Cells, 2021, 44, 26-37.	2.6	13
9	Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells. BMB Reports, 2021, , .	2.4	O
10	Depletion of Janus kinase-2 promotes neuronal differentiation of mouse embryonic stem cells. BMB Reports, 2021, 54, 626-631.	2.4	1
11	Cathepsin K inhibition-induced mitochondrial ROS enhances sensitivity of cancer cells to anti-cancer drugs through USP27x-mediated Bim protein stabilization. Redox Biology, 2020, 30, 101422.	9.0	29
12	Systematic identification of a nuclear receptor-enriched predictive signature for erastin-induced ferroptosis. Redox Biology, 2020, 37, 101719.	9.0	23
13	Zika Virus Induces Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL)-Mediated Apoptosis in Human Neural Progenitor Cells. Cells, 2020, 9, 2487.	4.1	13
14	Polyunsaturated fatty acid biosynthesis pathway determines ferroptosis sensitivity in gastric cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32433-32442.	7.1	200
15	Identification of MYC as an antinecroptotic protein that stifles RIPK1–RIPK3 complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19982-19993.	7.1	17
16	The transcription factor PITX1 drives astrocyte differentiation by regulating the SOX9 gene. Journal of Biological Chemistry, 2020, 295, 13677-13690.	3.4	10
17	Cytoplasmic MYC is an anti-necroptotic protein. Molecular and Cellular Oncology, 2020, 7, 1817697.	0.7	2
18	Nurr1 performs its anti-inflammatory function by regulating RasGRP1 expression in neuro-inflammation. Scientific Reports, 2020, 10, 10755.	3.3	17

#	Article	IF	CITATIONS
19	IDH1-dependent \hat{l} ±-KG regulates brown fat differentiation and function by modulating histone methylation. Metabolism: Clinical and Experimental, 2020, 105, 154173.	3.4	15
20	Inhibition of Jurkat T Cell Proliferation by Active Components of <i>Rumex japonicus</i> Roots Via Induced Mitochondrial Damage and Apoptosis Promotion. Journal of Microbiology and Biotechnology, 2020, 30, 1885-1895.	2.1	3
21	Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biology, 2019, 17, e3000367.	5.6	45
22	Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death and Disease, 2019, 10, 835.	6.3	203
23	Absence of Cytosolic 2-Cys Prx Subtypes I and II Exacerbates TNF-α-Induced Apoptosis via Different Routes. Cell Reports, 2019, 26, 2194-2211.e6.	6.4	12
24	The roles of ubiquitination in extrinsic cell death pathways and its implications for therapeutics. Biochemical Pharmacology, 2019, 162, 21-40.	4.4	30
25	Protein Tyrosine Phosphatase, Receptor Type B (PTPRB) Inhibits Brown Adipocyte Differentiation through Regulation of VEGFR2 Phosphorylation. Journal of Microbiology and Biotechnology, 2019, 29, 645-650.	2.1	9
26	The deubiquitinating enzyme USP20 stabilizes ULK1 and promotes autophagy initiation. EMBO Reports, 2018, 19, .	4.5	39
27	Oncoprotein <scp>CIP</scp> 2A promotes the disassembly of primary cilia and inhibits glycolytic metabolism. EMBO Reports, 2018, 19, .	4.5	12
28	Ubiquitylation and degradation of adenomatous polyposis coli by MKRN1 enhances Wnt/ \hat{l}^2 -catenin signaling. Oncogene, 2018, 37, 4273-4286.	5.9	20
29	K6 linked polyubiquitylation of FADD by CHIP prevents death inducing signaling complex formation suppressing cell death. Oncogene, 2018, 37, 4994-5006.	5.9	26
30	USP8 suppresses death receptor-mediated apoptosis by enhancing FLIPL stability. Oncogene, 2017, 36, 458-470.	5.9	42
31	C-terminus of HSC70-Interacting Protein (CHIP) Inhibits Adipocyte Differentiation via Ubiquitin- and Proteasome-Mediated Degradation of PPARγ. Scientific Reports, 2017, 7, 40023.	3.3	13
32	Sorafenib tosylate inhibits directly necrosome complex formation and protects in mouse models of inflammation and tissue injury. Cell Death and Disease, 2017, 8, e2904-e2904.	6.3	69
33	HDAC11 Inhibits Myoblast Differentiation through Repression of MyoD-Dependent Transcription. Molecules and Cells, 2017, 40, 667-676.	2.6	24
34	Phosphorylation of p53 at threonine 155 is required for Jab1-mediated nuclear export of p53. BMB Reports, 2017, 50, 373-378.	2.4	16
35	USP11: A key regulator of cIAP2 stability and sensitivity to SMAC mimetics. Molecular and Cellular Oncology, 2016, 3, e1029829.	0.7	6
36	CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nature Cell Biology, 2016, 18, 291-302.	10.3	139

#	Article	IF	CITATIONS
37	New role of E3 ubiquitin ligase in the regulation of necroptosis. BMB Reports, 2016, 49, 247-248.	2.4	10
38	USP11-dependent selective cIAP2 deubiquitylation and stabilization determine sensitivity to Smac mimetics. Cell Death and Differentiation, 2015, 22, 1463-1476.	11.2	59
39	Suppression of PPAR \hat{I}^3 through MKRN1-mediated ubiquitination and degradation prevents adipocyte differentiation. Cell Death and Differentiation, 2014, 21, 594-603.	11.2	91
40	SWCNTs induced autophagic cell death in human bronchial epithelial cells. Toxicology in Vitro, 2014, 28, 442-450.	2.4	39
41	Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells. Toxicology in Vitro, 2014, 28, 1402-1412.	2.4	89
42	Stabilization of p21 (Cip1/WAF1) following Tip60-dependent acetylation is required for p21-mediated DNA damage response. Cell Death and Differentiation, 2013, 20, 620-629.	11.2	34
43	MafK positively regulates NF-κB activity by enhancing CBP-mediated p65 acetylation. Scientific Reports, 2013, 3, 3242.	3.3	64
44	Acceleration of Gastric Tumorigenesis Through MKRN1-Mediated Posttranslational Regulation of p14ARF. Journal of the National Cancer Institute, 2012, 104, 1660-1672.	6.3	55
45	Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nature Communications, 2012, 3, 978.	12.8	94
46	The roles of FADD in extrinsic apoptosis and necroptosis. BMB Reports, 2012, 45, 496-508.	2.4	108
47	Hdm2 negatively regulates telomerase activity by functioning as an E3 ligase of hTERT. Oncogene, 2010, 29, 4101-4112.	5.9	27
48	MKRN1 Induces Degradation of West Nile Virus Capsid Protein by Functioning as an E3 Ligase. Journal of Virology, 2010, 84, 426-436.	3.4	35
49	PML-IV functions as a negative regulator of telomerase by interacting with TERT. Journal of Cell Science, 2009, 122, 2613-2622.	2.0	31
50	Differential regulation of p53 and p21 by MKRN1 E3 ligase controls cell cycle arrest and apoptosis. EMBO Journal, 2009, 28, 2100-2113.	7.8	141
51	Jab1 has negative effects on p53-mediated genotoxic stresses. BMB Reports, 2009, 42, 299-303.	2.4	1
52	West Nile virus capsid protein induces p53-mediated apoptosis via the sequestration of HDM2 to the nucleolus. Cellular Microbiology, 2007, 10, 070816152918002-???.	2.1	96
53	Jab1 Mediates Cytoplasmic Localization and Degradation of West Nile Virus Capsid Protein. Journal of Biological Chemistry, 2006, 281, 30166-30174.	3.4	64
54	Jab1 Induces the Cytoplasmic Localization and Degradation of p53 in Coordination with Hdm2. Journal of Biological Chemistry, 2006, 281, 17457-17465.	3.4	84

#	Article	IF	CITATIONS
55	Jab1 as a mediator of nuclear export and cytoplasmic degradation of p53. Molecules and Cells, 2006, 22, 133-40.	2.6	22