List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4863648/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supported σ omplexes of Liâ^'C Bonds from Coordination of Monomeric Molecules of LiCH 3 , LiCH 2 CH 3 and LiC 6 H 5 to Mo≣Mo Bonds. Angewandte Chemie, 2022, 134, .	2.0	0
2	Frustrated Lewis Pair Systems. , 2022, , .		0
3	Dicoordinate Au(I)–Ethylene Complexes as Hydroamination Catalysts. ACS Catalysis, 2022, 12, 4227-4241.	11.2	15
4	Unmasking the constitution and bonding of the proposed lithium nickelate "Li ₃ NiPh ₃ (solv) ₃ â€# revealing the hidden C ₆ H ₄ ligand. Chemical Science, 2022, 13, 5268-5276.	7.4	8
5	Mechanistic Investigations on Hydrogenation, Isomerization and Hydrosilylation Reactions Mediated by a Germylâ€Rhodium System. ChemCatChem, 2022, 14, .	3.7	5
6	Cover Feature: Mechanistic Investigations on Hydrogenation, Isomerization and Hydrosilylation Reactions Mediated by a Germylâ€Rhodium System (ChemCatChem 15/2022). ChemCatChem, 2022, 14, .	3.7	0
7	Coordination of E–C Bonds (E = Zn, Mg, Al) and the Zn–H Bonds of (C ₅ Me ₅)ZnH and (C ₅ Me ₅)ZnZnH across a Quadruply Bonded Dimolybdenum Dihydride Complex. Organometallics, 2022, 41, 3225-3236.	2.3	3
8	Bimetallic frustrated Lewis pairs. Advances in Organometallic Chemistry, 2021, , 95-148.	1.0	4
9	Reductive C–C Coupling from Molecular Au(I) Hydrocarbyl Complexes: A Mechanistic Study. Journal of the American Chemical Society, 2021, 143, 2509-2522.	13.7	7
10	Experimental and Computational Studies on Quadruply Bonded Dimolybdenum Complexes with Terminal and Bridging Hydride Ligands. Chemistry - A European Journal, 2021, 27, 6569-6578.	3.3	6
11	Coordination of LiH Molecules to Mo≣Mo Bonds: Experimental and Computational Studies on Mo ₂ LiH ₂ , Mo ₂ Li ₂ H ₄ , and Mo ₆ Li ₉ H ₁₈ Clusters. Journal of the American Chemical Society, 2021, 143, 5222-5230.	13.7	7
12	Reactivity of [Pt(P ^{<i>t</i>} Bu ₃) ₂] with Zinc(I/II) Compounds: Bimetallic Adducts, Zn–Zn Bond Cleavage, and Cooperative Reactivity. Organometallics, 2021, 40, 1113-1119.	2.3	18
13	Controlling Catenation in Germanium(I) Chemistry through Hemilability. Angewandte Chemie - International Edition, 2021, 60, 15606-15612.	13.8	12
14	Controlling Catenation in Germanium(I) Chemistry through Hemilability. Angewandte Chemie, 2021, 133, 15734-15740.	2.0	6
15	Cooperativity in Transition Metal Tetrylene Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 3488-3498.	2.0	40
16	Isomerization of a cationic (η5-C5Me5)Ir(III) complex involving remote C–C and C–H bond formation. Polyhedron, 2021, 207, 115363.	2.2	2
17	A dicoordinate gold(<scp>i</scp>)–ethylene complex. Chemical Communications, 2021, 57, 9280-9283.	4.1	12
18	Dehydrogenative Double Câ^'H Bond Activation in a Germyleneâ€Rhodium Complex**. Chemistry - A Furonean Journal, 2021, 27, 16422-16428	3.3	10

#	Article	IF	CITATIONS
19	Frustrated Lewis Pairs Based on Transition Metals. Molecular Catalysis, 2021, , 319-359.	1.3	2
20	Supported σ omplexes of Liâ^'C Bonds from Coordination of Monomeric Molecules of LiCH 3 , LiCH 2 CH 3 and LiC 6 H 5 to Mo≣Mo Bonds. Angewandte Chemie - International Edition, 2021, , e202116009.	13.8	8
21	Activation of Protic, Hydridic and Apolar Eâ^'H Bonds by a Borylâ€Substituted Ge ^{II} Cation. Chemistry - A European Journal, 2020, 26, 306-315.	3.3	27
22	Bimetallic cooperation across the periodic table. Nature Reviews Chemistry, 2020, 4, 696-702.	30.2	119
23	Structural Snapshots of ï€â€Arene Bonding in a Gold Germylene Cation. Chemistry - A European Journal, 2020, 26, 15519-15523.	3.3	7
24	Mn ^I complex redox potential tunability by remote lewis acid interaction. Dalton Transactions, 2020, 49, 16623-16626.	3.3	3
25	Reversible Hydride Migration from C ₅ Me ₅ to Rh ^I Revealed by a Cooperative Bimetallic Approach. Angewandte Chemie - International Edition, 2020, 59, 20863-20867.	13.8	17
26	Metalâ€only Lewis Pairs of Rhodium with <i>s</i> , <i>p</i> and <i>d</i> â€Block Metals. Chemistry - A European Journal, 2020, 26, 16833-16845.	3.3	22
27	Reversible Hydride Migration from C 5 Me 5 to Rh I Revealed by a Cooperative Bimetallic Approach. Angewandte Chemie, 2020, 132, 21049-21053.	2.0	4
28	Tuning Activity and Selectivity during Alkyne Activation by Gold(I)/Platinum(0) Frustrated Lewis Pairs. Organometallics, 2020, 39, 2534-2544.	2.3	20
29	Evidence for Genuine Bimetallic Frustrated Lewis Pair Activation of Dihydrogen with Gold(I)/Platinum(0) Systems. Chemistry - A European Journal, 2020, 26, 5982-5993.	3.3	37
30	A Versatile Approach to Access Trimetallic Complexes Based on Trisphosphinite Ligands. Molecules, 2020, 25, 593.	3.8	3
31	Evidence for Genuine Bimetallic Frustrated Lewis Pair Activation of Dihydrogen with Gold(I)/Platinum(0) Systems. Chemistry - A European Journal, 2020, 26, 5915-5915.	3.3	11
32	Synthetic, structural and reaction chemistry of N-heterocyclic germylene and stannylene compounds featuring <i>N</i> -boryl substituents. Dalton Transactions, 2019, 48, 11951-11960.	3.3	21
33	Base-Promoted, Remote C–H Activation at a Cationic (η ⁵ -C ₅ Me ₅)Ir(III) Center Involving Reversible C–C Bond Formation of Bound C ₅ Me ₅ . Journal of the American Chemical Society, 2019, 141, 2205-2210.	13.7	22
34	Evaluating stereoelectronic properties of bulky dialkylterphenyl phosphine ligands. Journal of Organometallic Chemistry, 2019, 896, 120-128.	1.8	21
35	Reactivity of a gold(<scp>i</scp>)/platinum(0) frustrated Lewis pair with germanium and tin dihalides. Dalton Transactions, 2019, 48, 9127-9138.	3.3	26
36	Cooperative activation of X–H (X = H, C, O, N) bonds by a Pt(0)/Ag(<scp>i</scp>) metal-only Lewis pair. Chemical Communications, 2019, 55, 8812-8815.	4.1	21

JESUS CAMPOS

#	Article	IF	CITATIONS
37	Borylated Nâ€Heterocyclic Carbenes: Rearrangement and Chemical Trapping. Chemistry - A European Journal, 2019, 25, 2556-2568.	3.3	3
38	Dehydrogenation of alcohols and polyols from a hydrogen production perspective. ChemistrySelect, 2018, 3, .	1.5	1
39	Cationic (η ⁵ -C ₅ Me ₄ R)Rh ^{III} Complexes with Metalated Aryl Phosphines Featuring η ⁴ -Phosphorus plus Pseudo-Allylic Coordination. Organometallics, 2018, 37, 11-21.	2.3	10
40	Ligand Rearrangement and Hemilability in Rhodium(I) and Iridium(I) Complexes Bearing Terphenyl Phosphanes. European Journal of Inorganic Chemistry, 2018, 2018, 2309-2321.	2.0	13
41	7. Dehydrogenation of alcohols and polyols from a hydrogen production perspective. , 2018, , 231-270.		0
42	Reactivity of a trans-[H–MoMo–H] unit towards alkenes and alkynes: bimetallic migratory insertion, H-elimination and other reactions. Chemical Communications, 2018, 54, 9186-9189.	4.1	11
43	Nâ€nacnac Stabilized Tetrelenes: Formation of an N,Pâ€Heterocyclic Germylene via C–C Bond Insertion. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1238-1242.	1.2	15
44	Dihydrogen and Acetylene Activation by a Gold(I)/Platinum(0) Transition Metal Only Frustrated Lewis Pair. Journal of the American Chemical Society, 2017, 139, 2944-2947.	13.7	106
45	The neutron diffraction structure of [Ir4(IMe)8H10]2+ polyhydride cluster: Testing the computational hydride positional assignments. Journal of Organometallic Chemistry, 2017, 849-850, 17-21.	1.8	8
46	Electronic Delocalization in Two and Three Dimensions: Differential Aggregation in Indium "Metalloid―Clusters. Angewandte Chemie - International Edition, 2017, 56, 15098-15102.	13.8	37
47	A Combined Experimental/Computational Study of the Mechanism of a Palladium atalyzed Boraâ€Negishi Reaction. Chemistry - A European Journal, 2017, 23, 12655-12667.	3.3	8
48	Electronic Delocalization in Two and Three Dimensions: Differential Aggregation in Indium "Metalloid―Clusters. Angewandte Chemie, 2017, 129, 15294-15298.	2.0	14
49	An Unsaturated Four oordinate Dimethyl Dimolybdenum Complex with a Molybdenum–Molybdenum Quadruple Bond. Chemistry - A European Journal, 2017, 23, 194-205.	3.3	10
50	A full set of iridium(<scp>iv</scp>) pyridine-alkoxide stereoisomers: highly geometry-dependent redox properties. Chemical Science, 2017, 8, 1642-1652.	7.4	32
51	Synthesis, properties, and some rhodium, iridium, and platinum complexes of a series of bulky m-terphenylphosphine ligands. Polyhedron, 2016, 116, 170-181.	2.2	28
52	Reaction of [TpRh(C ₂ H ₄) ₂] with Dimethyl Acetylenedicarboxylate: Identification of Intermediates of the [2+2+2] Alkyne and Alkyne–Ethylene Cyclo(co)trimerizations. Chemistry - A European Journal, 2016, 22, 13715-13723.	3.3	16
53	A stable heavier group 14 analogue of vinylidene. Nature Chemistry, 2016, 8, 1022-1026.	13.6	110
54	A Systematic Study of Structure and Eâ^'H Bond Activation Chemistry by Sterically Encumbered Germylene Complexes. Chemistry - A European Journal, 2016, 22, 11685-11698.	3.3	94

#	Article	IF	CITATIONS
55	Methyl Complexes of the Transition Metals. Chemistry - A European Journal, 2016, 22, 6432-6457.	3.3	23
56	Catalytic B–N Dehydrogenation Using Frustrated Lewis Pairs: Evidence for a Chain-Growth Coupling Mechanism. Journal of the American Chemical Society, 2016, 138, 3306-3309.	13.7	82
57	Reactivity of Cationic Agostic and Carbene Structures Derived from Platinum(II) Metallacycles. Chemistry - A European Journal, 2015, 21, 8883-8896.	3.3	45
58	Cobalt Boryl Complexes: Enabling and Exploiting Migratory Insertion in Baseâ€Metalâ€Mediated Borylation. Angewandte Chemie - International Edition, 2015, 54, 9586-9590.	13.8	38
59	Methyl-, Ethenyl-, and Ethynyl-Bridged Cationic Digold Complexes Stabilized by Coordination to a Bulky Terphenylphosphine Ligand. Angewandte Chemie - International Edition, 2015, 54, 15379-15384.	13.8	34
60	Catalytic Borylation using an Air‧table Zinc Boryl Reagent: Systematic Access to Elusive Acylboranes. Angewandte Chemie - International Edition, 2015, 54, 14159-14163.	13.8	55
61	Excited-state hydrogen atom abstraction initiates the photochemistry of β-2′-deoxycytidine. Chemical Science, 2015, 6, 2035-2043.	7.4	17
62	Methanol Dehydrogenation by Iridium N-Heterocyclic Carbene Complexes. Inorganic Chemistry, 2015, 54, 5079-5084.	4.0	146
63	Synthesis of new heteroscorpionate iridium(<scp>i</scp>) and iridium(<scp>ii</scp>) complexes. Dalton Transactions, 2015, 44, 6987-6998.	3.3	8
64	Stable Iridium(IV) Complexes of an Oxidation-Resistant Pyridine-Alkoxide Ligand: Highly Divergent Redox Properties Depending on the Isomeric Form Adopted. Journal of the American Chemical Society, 2015, 137, 7243-7250.	13.7	51
65	Facile Reversibility by Design: Tuning Small Molecule Capture and Activation by Single Component Frustrated Lewis Pairs. Journal of the American Chemical Society, 2015, 137, 12227-12230.	13.7	75
66	Gel-assisted crystallization of [Ir ₄ (IMe) ₇ (CO)H ₁₀] ²⁺ and [Ir ₄ (IMe) ₈ H ₉] ³⁺ clusters derived from catalytic glycerol dehydrogenation. Dalton Transactions, 2015, 44, 18403-18410.	3.3	20
67	Rhodium and Iridium Complexes of Bulky Tertiary Phosphine Ligands. Searching for Isolable Cationic MIII Alkylidenes. Organometallics, 2015, 34, 2212-2221.	2.3	30
68	Living Polymerization of Ethylene and Copolymerization of Ethylene/Methyl Acrylate Using "Sandwich―Diimine Palladium Catalysts. ACS Catalysis, 2015, 5, 456-464.	11.2	163
69	Selective catalytic oxidation of sugar alcohols to lactic acid. Green Chemistry, 2015, 17, 594-600.	9.0	52
70	Co(ii), a catalyst for selective conversion of phenyl rings to carboxylic acid groups. RSC Advances, 2014, 4, 49395-49399.	3.6	6
71	Metal-free amidation of ether sp3 C–H bonds with sulfonamides using PhI(OAc)2. RSC Advances, 2014, 4, 47951-47957.	3.6	23
72	Electrochemical Activation of Cp* Iridium Complexes for Electrode-Driven Water-Oxidation Catalysis. Journal of the American Chemical Society, 2014, 136, 13826-13834.	13.7	105

#	Article	IF	CITATIONS
73	Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nature Communications, 2014, 5, 5084.	12.8	207
74	Distortional Effects of Noncovalent Interactions in the Crystal Lattice of a Cp*Ir(III) Acylhydroxamic Acid Complex: A Joint Experimental–Computational Study. Organometallics, 2014, 33, 4417-4424.	2.3	2
75	Hydrogen-Transfer Catalysis with Cp*lr ^{III} Complexes: The Influence of the Ancillary Ligands. ACS Catalysis, 2014, 4, 99-108.	11.2	81
76	Catalyst Activation by Loss of Cyclopentadienyl Ligands in Hydrogen Transfer Catalysis with Cp*lr ^{III} Complexes. ACS Catalysis, 2014, 4, 973-985.	11.2	68
77	A Carbeneâ€Rich but Carbonylâ€Poor [Ir ₆ (IMe) ₈ (CO) ₂ H ₁₄] ²⁺ Polyhydride Cluster as a Deactivation Product from Catalytic Glycerol Dehydrogenation. Angewandte Chemie - International Edition, 2014, 53, 12808-12811.	13.8	42
78	A Carbeneâ€Rich but Carbonylâ€Poor [Ir ₆ (IMe) ₈ (CO) ₂ H ₁₄] ²⁺ Polyhydride Cluster as a Deactivation Product from Catalytic Glycerol Dehydrogenation. Angewandte Chemie, 2014, 126, 13022-13025.	2.0	9
79	Probing the Viability of Oxo-Coupling Pathways in Iridium-Catalyzed Oxygen Evolution. Organometallics, 2013, 32, 5384-5390.	2.3	42
80	Mechanism of Hydrogenolysis of an Iridium–Methyl Bond: Evidence for a Methane Complex Intermediate. Journal of the American Chemical Society, 2013, 135, 1217-1220.	13.7	33
81	A Cationic Terminal Methylene Complex of Ir(I) Supported by a Pincer Ligand. Organometallics, 2013, 32, 3423-3426.	2.3	14
82	Cyclometalated Iridium Complexes of Bis(Aryl) Phosphine Ligands: Catalytic C–H/C–D Exchanges and C–C Coupling Reactions. Inorganic Chemistry, 2013, 52, 6694-6704.	4.0	32
83	Cationic Ir(III) Alkylidenes Are Key Intermediates in C–H Bond Activation and C–C Bond-Forming Reactions. Journal of the American Chemical Society, 2012, 134, 7165-7175.	13.7	44
84	Synthesis and Reactivity of a Cationic Platinum(II) Alkylidene Complex. Angewandte Chemie - International Edition, 2012, 51, 8255-8258.	13.8	40
85	Largeâ€scale preparation and labelling reactions of deuterated silanes. Journal of Labelled Compounds and Radiopharmaceuticals, 2012, 55, 29-38.	1.0	25
86	Rhodium-Catalyzed, Efficient Deutero- and Tritiosilylation of Carbonyl Compounds from Hydrosilanes and Deuterium or Tritium. Organic Letters, 2011, 13, 5236-5239.	4.6	26
87	Synthesis and reactivity of half-sandwich (η5-C5Me5)Ir(iii) complexes of a cyclometallated aryl phosphine ligand. New Journal of Chemistry, 2011, 35, 2122.	2.8	14
88	Cyclometallation and Hydrogen/Deuterium Exchange Reactions of an Arylphosphine Ligand upon Coordination to {Ir(η ⁵ ₅ Me ₅)}. Chemistry - A European Journal, 2010, 16, 419-422.	3.3	21
89	A Cationic Rh(III) Complex That Efficiently Catalyzes Hydrogen Isotope Exchange in Hydrosilanes. Journal of the American Chemical Society, 2010, 132, 16765-16767.	13.7	60
90	Enhanced Dihydrogen Activation by Mononuclear Iridium(II) Compounds: A Mechanistic Study. Angewandte Chemie - International Edition, 0, , .	13.8	2

#	Article	IF	CITATIONS
91	Enhanced Dihydrogen Activation by Mononuclear Iridium(II) Compounds: A Mechanistic Study. Angewandte Chemie, 0, , .	2.0	0