John-Marc Chandonia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4863025/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	WebLogo: A Sequence Logo Generator. Genome Research, 2004, 14, 1188-1190.	2.4	10,751
2	KBase: The United States Department of Energy Systems Biology Knowledgebase. Nature Biotechnology, 2018, 36, 566-569.	9.4	955
3	Data growth and its impact on the SCOP database: new developments. Nucleic Acids Research, 2007, 36, D419-D425.	6.5	854
4	The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families. PLoS Biology, 2007, 5, e16.	2.6	736
5	SCOPe: Structural Classification of Proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Research, 2014, 42, D304-D309.	6.5	627
6	The ASTRAL Compendium in 2004. Nucleic Acids Research, 2004, 32, 189D-192.	6.5	480
7	The Impact of Structural Genomics: Expectations and Outcomes. Science, 2006, 311, 347-351.	6.0	366
8	SCOPe: classification of large macromolecular structures in the structural classification of proteins—extended database. Nucleic Acids Research, 2019, 47, D475-D481.	6.5	122
9	ASTRAL compendium enhancements. Nucleic Acids Research, 2002, 30, 260-263.	6.5	117
10	New methods for accurate prediction of protein secondary structure. Proteins: Structure, Function and Bioinformatics, 1999, 35, 293-306.	1.5	114
11	High-resolution autoreactive epitope mapping and structural modeling of the 65 kDa form of human glutamic acid decarboxylase. Journal of Molecular Biology, 1999, 287, 983-999.	2.0	100
12	Neural networks for secondary structure and structural class predictions. Protein Science, 1995, 4, 275-285.	3.1	99
13	SCOPe: Manual Curation and Artifact Removal in the Structural Classification of Proteins – extended Database. Journal of Molecular Biology, 2017, 429, 348-355.	2.0	85
14	Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches. Proteins: Structure, Function and Bioinformatics, 2004, 58, 166-179.	1.5	61
15	SCOPe: improvements to the structural classification of proteins – extended database to facilitate variant interpretation and machine learning. Nucleic Acids Research, 2022, 50, D553-D559.	6.5	59
16	Large Circular Plasmids from Groundwater Plasmidomes Span Multiple Incompatibility Groups and Are Enriched in Multimetal Resistance Genes. MBio, 2019, 10, .	1.8	42
17	The importance of larger data sets for protein secondary structure prediction with neural networks. Protein Science, 1996, 5, 768-774.	3.1	39
18	The value of protein structure classification information—Surveying the scientific literature. Proteins: Structure, Function and Bioinformatics, 2015, 83, 2025-2038.	1.5	37

#	Article	IF	CITATIONS
19	Structural Genomics of Minimal Organisms and Protein Fold Space. Journal of Structural and Functional Genomics, 2005, 6, 63-70.	1.2	29
20	Survey of large protein complexes in <i>D. vulgaris</i> reveals great structural diversity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16580-16585.	3.3	29
21	Microbiome Metadata Standards: Report of the National Microbiome Data Collaborative's Workshop and Follow-On Activities. MSystems, 2021, 6, .	1.7	28
22	Target selection and deselection at the Berkeley Structural Genomics Center. Proteins: Structure, Function and Bioinformatics, 2005, 62, 356-370.	1.5	27
23	Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center. Journal of Structural and Functional Genomics, 2007, 8, 99-105.	1.2	26
24	High-throughput Isolation and Characterization of Untagged Membrane Protein Complexes: Outer Membrane Complexes of <i>Desulfovibrio vulgaris</i> . Journal of Proteome Research, 2012, 11, 5720-5735.	1.8	22
25	Comparative mapping of sequence-based and structure-based protein domains. BMC Bioinformatics, 2005, 6, 77.	1.2	16
26	Bacterial Interactomes: Interacting Protein Partners Share Similar Function and Are Validated in Independent Assays More Frequently Than Previously Reported. Molecular and Cellular Proteomics, 2016, 15, 1539-1555.	2.5	16
27	Temporal Dynamics of In-Field Bioreactor Populations Reflect the Groundwater System and Respond Predictably to Perturbation. Environmental Science & Technology, 2017, 51, 2879-2889.	4.6	15
28	StrBioLib: a Java library for development of custom computational structural biology applications. Bioinformatics, 2007, 23, 2018-2020.	1.8	14
29	Quantitative Tagless Copurification: A Method to Validate and Identify Protein-Protein Interactions. Molecular and Cellular Proteomics, 2016, 15, 2186-2202.	2.5	12
30	Towards a Rigorous Network of Protein-Protein Interactions of the Model Sulfate Reducer Desulfovibrio vulgaris Hildenborough. PLoS ONE, 2011, 6, e21470.	1.1	12
31	Characterization of a Metal-Resistant Bacillus Strain With a High Molybdate Affinity ModA From Contaminated Sediments at the Oak Ridge Reservation. Frontiers in Microbiology, 2020, 11, 587127.	1.5	11
32	Structural proteomics of minimal organisms: conservation of protein fold usage and evolutionary implications. , 2006, 6, 7.		10
33	NMR structure of the N-terminal domain of the replication initiator protein DnaA. Journal of Structural and Functional Genomics, 2007, 8, 11-17.	1.2	9
34	WIST: toolkit for rapid, customized LIMS development. Bioinformatics, 2011, 27, 437-438.	1.8	9
35	Structural genomics and structural biology: compare and contrast. Genome Biology, 2004, 5, 343.	13.9	8
36	Ecogenomics of Groundwater Phages Suggests Niche Differentiation Linked to Specific Environmental Tolerance. MSystems, 2021, 6, e0053721.	1.7	8

JOHN-MARC CHANDONIA

#	Article	IF	CITATIONS
37	Lessons from the CAGlâ€4 Hopkins clinical panel challenge. Human Mutation, 2017, 38, 1155-1168.	1.1	6
38	New Local Potential Useful for Genome Annotation and 3D Modeling. Journal of Molecular Biology, 2003, 332, 835-850.	2.0	3
39	ANDY: a general, fault-tolerant tool for database searching on computer clusters. Bioinformatics, 2006, 22, 618-620.	1.8	3
40	Structural Genomics of Minimal Organisms: Pipeline and Results. Methods in Molecular Biology, 2008, 426, 475-496.	0.4	3
41	Complete Genome Sequence of Bacillus cereus Strain CPT56D-587-MTF, Isolated from a Nitrate- and Metal-Contaminated Subsurface Environment. Microbiology Resource Announcements, 2022, 11, e0014522.	0.3	1
42	Overview of Structural Genomics. , 2005, , 1-18.		0
43	Draft Genome Sequence of <i>Bacillus</i> sp. Strain EB106-08-02-XG196, Isolated from High-Nitrate-Contaminated Sediment. Microbiology Resource Announcements, 2020, 9, .	0.3	0