Toshiya Sakata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4862724/publications.pdf

Version: 2024-02-01

111	1,881	23	40
papers	citations	h-index	g-index
115	115	115	1380
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	DNA Analysis Chip Based on Field-Effect Transistors. Japanese Journal of Applied Physics, 2005, 44, 2854-2859.	1.5	123
2	DNA Sequencing Based on Intrinsic Molecular Charges. Angewandte Chemie - International Edition, 2006, 45, 2225-2228.	13.8	110
3	Immobilization of oligonucleotide probes on Si3N4 surface and its application to genetic field effect transistor. Materials Science and Engineering C, 2004, 24, 827-832.	7.3	93
4	Potentiometric Detection of Single Nucleotide Polymorphism by Using a Genetic Field-effect transistor. ChemBioChem, 2005, 6, 703-710.	2.6	91
5	Detection of DNA recognition events using multi-well field effect devices. Biosensors and Bioelectronics, 2005, 21, 827-832.	10.1	68
6	Stable Immobilization of an Oligonucleotide Probe on a Gold Substrate Using Tripodal Thiol Derivatives. Langmuir, 2007, 23, 2269-2272.	3.5	64
7	Direct transduction of allele-specific primer extension into electrical signal using genetic field effect transistor. Biosensors and Bioelectronics, 2007, 22, 1311-1316.	10.1	62
8	Open Sandwich-Based Immuno-Transistor for Label-Free and Noncompetitive Detection of Low Molecular Weight Antigen. Analytical Chemistry, 2009, 81, 7532-7537.	6.5	62
9	Potential Behavior of Biochemically Modified Gold Electrode for Extended-Gate Field-Effect Transistor. Japanese Journal of Applied Physics, 2005, 44, 2860-2863.	1.5	56
10	Biologically Coupled Gate Field-Effect Transistors Meet <i>in Vitro</i> Diagnostics. ACS Omega, 2019, 4, 11852-11862.	3.5	56
11	Noninvasive Monitoring of Transporterâ "Substrate Interaction at Cell Membrane. Analytical Chemistry, 2008, 80, 1493-1496.	6.5	55
12	Chemicalâ€toâ€Electricalâ€Signal Transduction Synchronized with Smart Gel Volume Phase Transition. Advanced Materials, 2009, 21, 4372-4378.	21.0	51
13	Glucose-responsive hydrogel electrode for biocompatible glucose transistor. Science and Technology of Advanced Materials, 2017, 18, 26-33.	6.1	48
14	Well-designed dopamine-imprinted polymer interface for selective and quantitative dopamine detection among catecholamines using a potentiometric biosensor. Biosensors and Bioelectronics, 2018, 117, 810-817.	10.1	45
15	Single Embryo-Coupled Gate Field Effect Transistor for Elective Single Embryo Transfer. Analytical Chemistry, 2013, 85, 6633-6638.	6.5	43
16	Live Monitoring of Microenvironmental pH Based on Extracellular Acidosis around Cancer Cells with Cell-Coupled Gate Ion-Sensitive Field-Effect Transistor. Analytical Chemistry, 2018, 90, 12731-12736.	6.5	41
17	Molecularly Imprinted Artificial Biointerface for an Enzyme-Free Glucose Transistor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 34983-34990.	8.0	39
18	Association between tear and blood glucose concentrations: Random intercept model adjusted with confounders in tear samples negative for occult blood. Journal of Diabetes Investigation, 2021, 12, 266-276.	2.4	34

#	Article	IF	CITATIONS
19	Enhancement of Signal-to-Noise Ratio for Serotonin Detection with Well-Designed Nanofilter-Coated Potentiometric Electrochemical Biosensor. ACS Applied Materials & Interfaces, 2020, 12, 14761-14769.	8.0	33
20	Potentiometric Adsorption Isotherm Analysis of a Molecularly Imprinted Polymer Interface for Small-Biomolecule Recognition. ACS Omega, 2018, 3, 5382-5389.	3.5	29
21	Polymeric Nanofilter Biointerface for Potentiometric Small-Biomolecule Recognition. ACS Applied Materials & Samp; Interfaces, 2019, 11, 5561-5569.	8.0	24
22	Fundamental Properties of Phenylboronicâ€Acidâ€Coated Gate Fieldâ€Effect Transistor for Saccharide Sensing. ChemElectroChem, 2014, 1, 1647-1655.	3.4	23
23	Ion Sensitive Transparent-Gate Transistor for Visible Cell Sensing. Analytical Chemistry, 2017, 89, 3901-3908.	6.5	23
24	Nonoptical Detection of Allergic Response with a Cell-Coupled Gate Field-Effect Transistor. Analytical Chemistry, 2017, 89, 12918-12923.	6.5	23
25	Elucidation of interfacial pH behaviour at the cell/substrate nanogap for <i>in situ</i> monitoring of cellular respiration. Nanoscale, 2018, 10, 10130-10136.	5.6	23
26	Molecularly imprinted polymer-based bioelectrical interfaces with intrinsic molecular charges. RSC Advances, 2020, 10, 16999-17013.	3.6	23
27	Biocompatible Poly(catecholamine)-Film Electrode for Potentiometric Cell Sensing. ACS Sensors, 2018, 3, 476-483.	7.8	22
28	Biocompatible and flexible paper-based metal electrode for potentiometric wearable wireless biosensing. Science and Technology of Advanced Materials, 2020, 21, 379-387.	6.1	21
29	Glucose-sensitive field effect transistor using totally synthetic compounds. Journal of Solid State Electrochemistry, 2009, 13, 165-170.	2.5	20
30	Design and Fabrication of Silicon Nanowire-Based Biosensors with Integration of Critical Factors: Toward Ultrasensitive Specific Detection of Biomolecules. ACS Applied Materials & Samp; Interfaces, 2020, 12, 51808-51819.	8.0	19
31	Detection of Molecular Charges at Cell Membrane. Japanese Journal of Applied Physics, 2008, 47, 368-370.	1.5	18
32	Self-Oriented Immobilization of DNA Polymerase Tagged by Titanium-Binding Peptide Motif. Langmuir, 2015, 31, 732-740.	3.5	18
33	Control of Potential Response to Small Biomolecules with Electrochemically Grafted Aryl-Based Monolayer in Field-Effect Transistor-Based Sensors. Langmuir, 2019, 35, 3701-3709.	3.5	18
34	Simultaneous Biosensing with Quartz Crystal Microbalance with a Dissipation Coupled-Gate Semiconductor Device. Analytical Chemistry, 2013, 85, 5796-5800.	6.5	17
35	Chondrocyte spheroids on microfabricated PEG hydrogel surface and their noninvasive functional monitoring. Science and Technology of Advanced Materials, 2012, 13, 064217.	6.1	16
36	Solution-Gated Ultrathin Channel Indium Tin Oxide-Based Field-Effect Transistor Fabricated by a One-Step Procedure that Enables High-Performance Ion Sensing and Biosensing. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 38569-38578.	8.0	16

3

#	Article	IF	CITATIONS
37	Electrical detection of ovum membrane charges using biotransistor. Microelectronic Engineering, 2008, 85, 1337-1340.	2.4	15
38	Real-time and noninvasive monitoring of respiration activity of fertilized ova using semiconductor-based biosensing devices. European Biophysics Journal, 2011, 40, 699-704.	2.2	15
39	Distinctive Potential Behavior at the Oxidized Surface of a Semiconductor Device in a Concentrated Aqueous Salt Solution. ChemElectroChem, 2014, 1, 1516-1524.	3.4	15
40	<i>In situ</i> electrical monitoring of cancer cells invading vascular endothelial cells with semiconductorâ€based biosensor. Genes To Cells, 2017, 22, 203-209.	1.2	15
41	Calculation of surface potentials at the silica–water interface using molecular dynamics: Challenges and opportunities. Japanese Journal of Applied Physics, 2018, 57, 04FM02.	1.5	15
42	Effect of double-stranded DNA on electrical double layer structure at oxide/electrolyte interface in classical molecular dynamics simulation. Chemical Physics Letters, 2015, 619, 152-157.	2.6	14
43	Charge Behaviors around Oxide Device/Pseudo-Physiological Solution Interface with Molecular Dynamic Simulations. Japanese Journal of Applied Physics, 2013, 52, 127001.	1.5	13
44	Molecular-Charge-Contact-Based Ion-Sensitive Field-Effect Transistor Sensor in Microfluidic System for Protein Sensing. Sensors, 2019, 19, 3393.	3.8	13
45	In situ measurement of autophagy under nutrient starvation based on interfacial pH sensing. Scientific Reports, 2018, 8, 8282.	3.3	12
46	Understanding the Molecular Structure of the Sialic Acid–Phenylboronic Acid Complex by using a Combined NMR Spectroscopy and DFT Study: Toward Sialic Acid Detection at Cell Membranes. ChemistryOpen, 2018, 7, 513-519.	1.9	12
47	Sperm-Cultured Gate Ion-Sensitive Field-Effect Transistor for Non-Optical and Live Monitoring of Sperm Capacitation. Sensors, 2019, 19, 1784.	3.8	11
48	Estimation of Extracellular Matrix Production Using a Cultured-Chondrocyte-Based Gate Ion-Sensitive Field-Effect Transistor. Analytical Chemistry, 2019, 91, 16017-16022.	6.5	11
49	Fundamental Characteristics of a Glucose Transistor with a Chemically Functional Interface. ChemElectroChem, 2017, 4, 2225-2231.	3.4	10
50	Biocompatible and Na ⁺ -sensitive thin-film transistor for biological fluid sensing. Science and Technology of Advanced Materials, 2019, 20, 917-926.	6.1	10
51	Aptamer-based nanofilter interface for small-biomarker detection with potentiometric biosensor. Electrochimica Acta, 2021, 368, 137631.	5.2	9
52	Real-Time Monitoring of Potassium Ion Release Due to Apoptosis with Cell-Based Transparent-Gate Transistor. Applied Physics Express, 2012, 5, 017001.	2.4	8
53	Characterization of ion-sensitive extended-gate field effect transistor coated with functional self-assembled monolayer. Japanese Journal of Applied Physics, 2015, 54, 04DL06.	1.5	8
54	Development of molecularly imprinted polymer-based field effect transistor for sugar chain sensing. Japanese Journal of Applied Physics, 2017, 56, 04CM02.	1.5	8

#	Article	IF	CITATIONS
55	Potentiometric Langmuir Isotherm Analysis of Histamine-Selective Molecularly Imprinted Polymer-Based Field-Effect Transistor. ECS Journal of Solid State Science and Technology, 2018, 7, Q3079-Q3082.	1.8	8
56	Dysregulation of a potassium channel, THIK-1, targeted by caspase-8 accelerates cell shrinkage. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2766-2783.	4.1	7
57	Dynamic electrical behaviour of a thermoresponsive polymer in well-defined poly(N-isopropylacrylamide)-grafted semiconductor devices. RSC Advances, 2017, 7, 34517-34521.	3.6	7
58	Free-standing conductive hydrogel electrode for potentiometric glucose sensing. RSC Advances, 2022, 12, 5369-5373.	3.6	7
59	Charged nanosphere-coupled biotransistor for highly sensitive genetic analysis. Current Applied Physics, 2009, 9, e210-e213.	2.4	6
60	Continuous Monitoring of Electrical Activity of Pancreatic \hat{l}^2 -Cells Using Semiconductor-Based Biosensing Devices. Japanese Journal of Applied Physics, 2011, 50, 020216.	1.5	6
61	Molecular charge contact biosensing based on the interaction of biologically modified magnetic beads with an ion-sensitive field effect transistor. European Biophysics Journal, 2014, 43, 217-225.	2.2	6
62	Cell Adhesion Characteristics on Tantalum Pentoxide Gate Insulator for Cultured-Cell-Gate Field-Effect Transistor. Langmuir, 2021, 37, 7548-7555.	3.5	6
63	Direct Electrochemical Signaling in Organic Electrochemical Transistors Comprising High-Conductivity Double-Network Hydrogels. ACS Applied Materials & Interfaces, 2022, 14, 24729-24740.	8.0	6
64	Cell adhesion characteristics of chemically modified silicon nitride surfaces. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2, 295-300.	1.4	5
65	Development of cell/transistor interface for real-time and noninvasive monitoring of potassium ion release based on apoptosis using biologically-coupled field effect transistor. Transactions of the Materials Research Society of Japan, 2010, 35, 255-258.	0.2	5
66	Long-term and real-time monitoring of chondrocyte behavior synthesizing extracellular matrix with biologically coupled field effect transistor. Japanese Journal of Applied Physics, 2017, 56, 04CM03.	1.5	4
67	Effect of Ionic Atmosphere around DNA/Electrolyte Interface on Potentiometric Signal. Journal of the Electrochemical Society, 2017, 164, B548-B552.	2.9	4
68	Reviewâ€"Egg Cells on a Semiconductor: Potentials in Drug Screening and Clinical Diagnostics. ECS Journal of Solid State Science and Technology, 2018, 7, Q3094-Q3103.	1.8	4
69	Charge-Coupling Extended-Gate Amorphous-InGaZnO-Based Thin-Film Transistor for Use as Ultrasensitive Biosensor. Journal of the Electrochemical Society, 2018, 165, B571-B575.	2.9	4
70	Electropolymerized Poly(toluidine blue O) Film Electrode for Potentiometric Biosensing. Sensors and Materials, 2018, 30, 2333.	0.5	4
71	<i>In Situ Is Electrical Monitoring of Methylated DNA Based on Its Conformational Change to G-Quadruplex Using a Solution-Gated Field-Effect Transistor. Analytical Chemistry, 2021, 93, 16709-16717.</i>	6.5	4
72	Densification of Diazonium-Based Organic Thin Film as Bioelectrical Interface. Langmuir, 2021, 37, 14369-14379.	3.5	4

#	Article	IF	CITATIONS
73	Potentiometric Detection of DNA Molecules Hybridization Using Gene Field Effect Transistor and Intercalator. Materials Research Society Symposia Proceedings, 2003, 782, 1.	0.1	3
74	Surface Characteristics and Formation of Polyserotonin Thin Films for Bioelectrical and Biocompatible Interfaces. Langmuir, 2022, 38, 8633-8642.	3.5	3
75	Concurrent design for NiAl-based ($\hat{l}^2/\hat{l}^3\hat{a}\in^2$) two-phase alloys by controlling microstructure and texture. Science and Technology of Advanced Materials, 2002, 3, 157-164.	6.1	2
76	Real-time monitoring of voltage shift based on enzymatically released pyrophosphate using phenylboronic acid-immobilized gate field-effect transistor. Japanese Journal of Applied Physics, 2014, 53, 04EL04.	1.5	2
77	Elucidation of Semiconductor/Bio-Interface Structure with Massive Classical Molecular Dynamics Simulation. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2014, 65, 251-256.	0.2	2
78	Monitoring of hydroxyapatite crystal formation using field-effect transistor. Japanese Journal of Applied Physics, 2016, 55, 04EM09.	1.5	2
79	Interfacial pH Behavior at a Cell/Gate Insulator Nanogap Induced by Allergic Responses. ACS Omega, 2019, 4, 14255-14260.	3.5	2
80	Capacitance-Voltage Measurement of Transporting Function at Cell Membrane. IEEJ Transactions on Sensors and Micromachines, 2009, 129, 242-244.	0.1	2
81	Semiconductor-based Biosensing Technology for <i>in vitro</i> Diagnostic Device. IEEJ Transactions on Sensors and Micromachines, 2017, 137, 296-300.	0.1	2
82	Hydrogel-Coated Gate Field-Effect Transistor for Real-Time and Label-Free Monitoring of \hat{l}^2 -Amyloid Aggregation and Its Inhibition. Analytical Chemistry, 2022, , .	6.5	2
83	Self-oscillating chemoelectrical interface of solution-gated ion-sensitive field-effect transistor based on Belousov–Zhabotinsky reaction. Scientific Reports, 2022, 12, 2949.	3.3	2
84	Technical Perspectives on Applications of Biologically Coupled Gate Field-Effect Transistors. Sensors, 2022, 22, 4991.	3.8	2
85	Development of Microstructure and Texture in Rapidly Solidified and Annealed Ni-Al Alloys. Materials Transactions, 2001, 42, 2382-2385.	1.2	1
86	Distinctive Potential Behavior at Oxidized Surface of Semiconductor Device in Concentrated Aqueous Salt Solution. ChemElectroChem, 2014, 1, 1427-1427.	3.4	1
87	Real-time Monitoring of Cell Activities by Diamond Solution-gated Field Effect Transistors. Procedia Engineering, 2016, 168, 469-472.	1.2	1
88	Molecularly imprinted polymer-based FET biosensor for oligosaccharides sensing to target cancer cells. , 2016 , , .		1
89	Development of paper-gate transistor toward direct detection from microbiological fluids. Japanese Journal of Applied Physics, 2017, 56, 04CM07.	1.5	1
90	<i>In Vitro</i> Diagnostic Device with a Bio-Coupled Gate Field Effect Transistor. International Journal of Automation Technology, 2018, 12, 45-51.	1.0	1

#	Article	IF	Citations
91	Effect of Electrochemically Grafted Aryl-Based Monolayer on Nonspecific Electrical Signal of Field-Effect-Transistor-Based Biosensor. ECS Transactions, 2019, 89, 17-24.	0.5	1
92	Functionalization of Polymeric Nanofilter Biointerface for Small Biomarker Sensing. ECS Transactions, 2020, 97, 9-14.	0.5	1
93	lon sensitivity from current hysteresis in InAs nanowire field-effect transistors functionalized with ionophore-doped fluorosilicone membranes. Sensors and Actuators B: Chemical, 2021, 336, 129704.	7.8	1
94	Slow-phase-transition Behavior of Thermoresponsive Polymer Brushes Constrained at Substrate Observed by <i>In Situ</i> Electrical Monitoring Using Poly(<i>N</i> -isopropylacrylamide)-grafted Gate Field-effect Transistor. Chemistry Letters, 2021, 50, 1852-1855.	1.3	1
95	Detection sensitivity of genetic field effect transistor combined with charged nanoparticle-DNA conjugate. , $2006, , .$		0
96	Genetic field effect devices for DNA analysis. , 2006, , .		0
97	Drug transport measurement for transporter variants using oocyte-based field effect transistor., 2007,,.		0
98	Control of Texture in Intermetallic Compounds by Thermomechanical Processing. Solid State Phenomena, 2007, 127, 9-14.	0.3	0
99	Cell adhesion characteristics of chemically modified silicon nitride surfaces. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2, xiii-xiv.	1.4	0
100	Label-Free and Noninvasive Monitoring of Cell Differentiation on Spheroid Microarray. IEICE Transactions on Electronics, 2013, E96.C, 353-357.	0.6	0
101	Cell adhesion monitoring of human induced pluripotent stem cell based on intrinsic molecular charges. Japanese Journal of Applied Physics, 2014, 53, 05FS02.	1.5	0
102	In vitro bio-circuit sensing based on cell-semiconductor interaction. , 2015, , .		0
103	(Invited) Semiconductor-Based Biosensing Technology for Clinical Diagnosis. ECS Transactions, 2017, 77, 3-9.	0.5	0
104	Bioanalytical Method Based on Extended-Gate Field-Effect Transistor Modified by Self-Assembled Monolayer. International Journal of Automation Technology, 2018, 12, 52-63.	1.0	0
105	Prefaceâ€"JSS Focus Issue on Semiconductor-Based Sensors for Application to Vapors, Chemicals, Biological Species, and Medical Diagnosis. ECS Journal of Solid State Science and Technology, 2018, 7, Y5-Y5.	1.8	0
106	Electrical Detection of Bio-molecular Recognition Using Insulated Gate Field Effect Transistors. Hyomen Kagaku, 2006, 27, 13-20.	0.0	0
107	Review Paper on "In vitro Biosensing based on Semiconductor Devices". IEEJ Transactions on Sensors and Micromachines, 2011, 131, 409-413.	0.1	0
108	Sensing of Biomolecules and Cells by Semiconductor Device., 2015, , 323-362.		0

#	Article	IF	CITATIONS
109	Fabrication of Holder-type Piezoresistive Cantilever for Embryo Mass Measurement. Sensors and Materials, 2018, 30, 2369.	0.5	0
110	Biological sensing technology based on intrinsic molecular charges. , 2019, , .		0
111	Functionalization of Polymeric Nanofilter Biointerface for Small Biomarker Sensing. ECS Meeting Abstracts, 2020, MA2020-01, 1399-1399.	0.0	O