James H Mckerrow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4862362/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potent Anti-SARS-CoV-2 Activity by the Natural Product Gallinamide A and Analogues via Inhibition of Cathepsin L. Journal of Medicinal Chemistry, 2022, 65, 2956-2970.	6.4	46
2	ldentification of Leucinostatins from <i>Ophiocordyceps</i> sp. as Antiparasitic Agents against <i>Trypanosoma cruzi</i> . ACS Omega, 2022, 7, 7675-7682.	3.5	3
3	Intramolecular Interactions Enhance the Potency of Gallinamide A Analogues against <i>Trypanosoma cruzi</i> . Journal of Medicinal Chemistry, 2022, 65, 4255-4269.	6.4	9
4	Small-Molecule Thioesters as SARS-CoV-2 Main Protease Inhibitors: Enzyme Inhibition, Structure–Activity Relationships, Antiviral Activity, and X-ray Structure Determination. Journal of Medicinal Chemistry, 2022, 65, 9376-9395.	6.4	35
5	Discovery of Triple Inhibitors of Both SARS-CoV-2 Proteases and Human Cathepsin L. Pharmaceuticals, 2022, 15, 744.	3.8	5
6	First report on prevalence of SARS-CoV-2 infection among health-care workers in Nicaragua. PLoS ONE, 2021, 16, e0246084.	2.5	18
7	A Clinical-Stage Cysteine Protease Inhibitor blocks SARS-CoV-2 Infection of Human and Monkey Cells. ACS Chemical Biology, 2021, 16, 642-650.	3.4	74
8	<i>Acanthamoeba</i> Keratitis: an update on amebicidal and cysticidal drug screening methodologies and potential treatment with azole drugs. Expert Review of Anti-Infective Therapy, 2021, 19, 1427-1441.	4.4	14
9	Dysregulation of Glycerophosphocholines in the Cutaneous Lesion Caused by Leishmania major in Experimental Murine Models. Pathogens, 2021, 10, 593.	2.8	7
10	Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorganic and Medicinal Chemistry, 2021, 41, 116213.	3.0	31
11	Structure-Based Optimization of Quinazolines as Cruzain and <i>Tbr</i> CATL Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 13054-13071.	6.4	19
12	An Integrated Approach to Identify New Anti-Filarial Leads to Treat River Blindness, a Neglected Tropical Disease. Pathogens, 2021, 10, 71.	2.8	16
13	Spatial metabolomics identifies localized chemical changes in heart tissue during chronic cardiac Chagas Disease. PLoS Neglected Tropical Diseases, 2021, 15, e0009819.	3.0	18
14	Macrofilaricidal Benzimidazole–Benzoxaborole Hybrids as an Approach to the Treatment of River Blindness: Part 2. Ketone Linked Analogs. ACS Infectious Diseases, 2020, 6, 180-185.	3.8	14
15	Macrofilaricidal Benzimidazole–Benzoxaborole Hybrids as an Approach to the Treatment of River Blindness: Part 1. Amide Linked Analogs. ACS Infectious Diseases, 2020, 6, 173-179.	3.8	11
16	Long term follow-up of Trypanosoma cruzi infection and Chagas disease manifestations in mice treated with benznidazole or posaconazole. PLoS Neglected Tropical Diseases, 2020, 14, e0008726.	3.0	4
17	The Antifungal Drug Isavuconazole Is both Amebicidal and Cysticidal against Acanthamoeba castellanii. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	23
18	Molecular dissection of Chagas induced cardiomyopathy reveals central disease associated and druggable signaling pathways. PLoS Neglected Tropical Diseases, 2020, 14, e0007980.	3.0	9

#	Article	IF	CITATIONS
19	Peptidomimetic Vinyl Heterocyclic Inhibitors of Cruzain Effect Antitrypanosomal Activity. Journal of Medicinal Chemistry, 2020, 63, 3298-3316.	6.4	19
20	Scaffold and Parasite Hopping: Discovery of New Protozoal Proliferation Inhibitors. ACS Medicinal Chemistry Letters, 2020, 11, 249-257.	2.8	17
21	High-Throughput Screening of the ReFRAME Library Identifies Potential Drug Repurposing Candidates for Trypanosoma cruzi. Microorganisms, 2020, 8, 472.	3.6	10
22	Identification of Four Amoebicidal Nontoxic Compounds by a Molecular Docking Screen of <i>Naegleria fowleri</i> Sterol Δ8â"Δ7-Isomerase and Phenotypic Assays. ACS Infectious Diseases, 2019, 5, 2029-2038.	3.8	6
23	Why Funding for Neglected Tropical Diseases Should Be a Global Priority. Clinical Infectious Diseases, 2018, 67, 323-326.	5.8	21
24	Identification of cysteine protease inhibitors as new drug leads against Naegleria fowleri. Experimental Parasitology, 2018, 188, 36-41.	1.2	18
25	Impact of Single Dose Praziquantel Treatment on Schistosoma haematobium Infection among School Children in an Endemic Nigerian Community. Korean Journal of Parasitology, 2018, 56, 577-581.	1.3	6
26	The diverse roles of cysteine proteases in parasites and their suitability as drug targets. PLoS Neglected Tropical Diseases, 2018, 12, e0005639.	3.0	10
27	Predictions of novel Schistosoma mansoni - human protein interactions consistent with experimental data. Scientific Reports, 2018, 8, 13092.	3.3	9
28	In Vitro Efficacy of Ebselen and BAY 11-7082 Against Naegleria fowleri. Frontiers in Microbiology, 2018, 9, 414.	3.5	34
29	Substrate Specificity of Cysteine Proteases Beyond the S2 Pocket: Mutagenesis and Molecular Dynamics Investigation of Fasciola hepatica Cathepsins L. Frontiers in Molecular Biosciences, 2018, 5, 40.	3.5	10
30	Update on drug development targeting parasite cysteine proteases. PLoS Neglected Tropical Diseases, 2018, 12, e0005850.	3.0	31
31	Two key cathepsins, TgCPB and TgCPL, are targeted by the vinyl sulfone inhibitor K11777 in in vitro and in vivo models of toxoplasmosis. PLoS ONE, 2018, 13, e0193982.	2.5	14
32	Cathepsin B expression in colorectal cancer in a Middle East population: Potential value as a tumor biomarker for late disease stages. Oncology Reports, 2017, 37, 3175-3180.	2.6	23
33	Rapid Chagas Disease Drug Target Discovery Using Directed Evolution in Drug-Sensitive Yeast. ACS Chemical Biology, 2017, 12, 422-434.	3.4	26
34	Mass Spectrometry-Based Chemical Cartography of a Cardiac Parasitic Infection. Analytical Chemistry, 2017, 89, 10414-10421.	6.5	35
35	The rule of five should not impede anti-parasitic drug development. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 248-249.	3.4	36
36	Phase I Clinical Trial Results of Auranofin, a Novel Antiparasitic Agent. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	104

#	Article	IF	CITATIONS
37	Editorial: Drug Development for Parasite-Induced Diarrheal Diseases. Frontiers in Microbiology, 2017, 8, 577.	3.5	2
38	4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection. PLoS Neglected Tropical Diseases, 2017, 11, e0006132.	3.0	24
39	CYP51 is an essential drug target for the treatment of primary amoebic meningoencephalitis (PAM). PLoS Neglected Tropical Diseases, 2017, 11, e0006104.	3.0	45
40	Synthesis and Evaluation of Oxyguanidine Analogues of the Cysteine Protease Inhibitor WRR-483 against Cruzain. ACS Medicinal Chemistry Letters, 2016, 7, 77-82.	2.8	26
41	Polymorphisms of tumor necrosis factor alpha in Middle Eastern population with colorectal cancer. Tumor Biology, 2016, 37, 5529-5537.	1.8	7
42	X-ray structures of thioredoxin and thioredoxin reductase from Entamoeba histolytica and prevailing hypothesis of the mechanism of Auranofin action. Journal of Structural Biology, 2016, 194, 180-190.	2.8	60
43	Location, Location, Location: Five Facts about Tissue Tropism and Pathogenesis. PLoS Pathogens, 2016, 12, e1005519.	4.7	31
44	Heat shock protein 90 inhibitors repurposed against Entamoeba histolytica. Frontiers in Microbiology, 2015, 6, 368.	3.5	13
45	Prolyl Oligopeptidase from the Blood Fluke Schistosoma mansoni: From Functional Analysis to Anti-schistosomal Inhibitors. PLoS Neglected Tropical Diseases, 2015, 9, e0003827.	3.0	34
46	Machine Learning Models and Pathway Genome Data Base for Trypanosoma cruzi Drug Discovery. PLoS Neglected Tropical Diseases, 2015, 9, e0003878.	3.0	74
47	Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease. PLoS Pathogens, 2015, 11, e1005058.	4.7	52
48	Drug Susceptibility of Genetically Engineered Trypanosoma cruzi Strains and Sterile Cure in Animal Models as a Criterion for Potential Clinical Efficacy of Anti-T. cruzi Drugs. Antimicrobial Agents and Chemotherapy, 2015, 59, 7923-7924.	3.2	16
49	Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Research, 2015, 116, 76-84.	4.1	513
50	Synthesis of a Sugar-Based Thiosemicarbazone Series and Structure-Activity Relationship versus the Parasite Cysteine Proteases Rhodesain, Cruzain, and Schistosoma mansoni Cathepsin B1. Antimicrobial Agents and Chemotherapy, 2015, 59, 2666-2677.	3.2	57
51	Targeting Ergosterol Biosynthesis in Leishmania donovani: Essentiality of Sterol 14alpha-demethylase. PLoS Neglected Tropical Diseases, 2015, 9, e0003588.	3.0	90
52	Repurposing Auranofin as a Lead Candidate for Treatment of Lymphatic Filariasis and Onchocerciasis. PLoS Neglected Tropical Diseases, 2015, 9, e0003534.	3.0	88
53	Recognition of the role of Natural Products as drugs to treat neglected tropical diseases by the 2015 Nobel prize in physiology or medicine. Natural Product Reports, 2015, 32, 1610-1611.	10.3	19
54	Genome-Directed Lead Discovery: Biosynthesis, Structure Elucidation, and Biological Evaluation of Two Families of Polyene Macrolactams against <i>Trypanosoma brucei</i> . ACS Chemical Biology, 2015, 10, 2373-2381.	3.4	69

#	Article	IF	CITATIONS
55	Lead Identification to Clinical Candidate Selection: Drugs for Chagas Disease. Journal of Biomolecular Screening, 2015, 20, 101-111.	2.6	27
56	Trypsin- and Chymotrypsin-Like Serine Proteases in Schistosoma mansoni – â€~The Undiscovered Country'. PLoS Neglected Tropical Diseases, 2014, 8, e2766.	3.0	31
57	Activation Route of the Schistosoma mansoni Cathepsin B1 Drug Target: Structural Map with a Glycosaminoglycan Switch. Structure, 2014, 22, 1786-1798.	3.3	34
58	<i>R</i> -Configuration of 4-Aminopyridyl-Based Inhibitors of CYP51 Confers Superior Efficacy Against <i>Trypanosoma cruzi</i> . ACS Medicinal Chemistry Letters, 2014, 5, 434-439.	2.8	18
59	4-Aminopyridyl-Based CYP51 Inhibitors as Anti- <i>Trypanosoma cruzi</i> Drug Leads with Improved Pharmacokinetic Profile and in Vivo Potency. Journal of Medicinal Chemistry, 2014, 57, 6989-7005.	6.4	43
60	Determinants of disease phenotype in trypanosomatid parasites. Trends in Parasitology, 2014, 30, 342-349.	3.3	58
61	A Cysteine Protease Inhibitor Rescues Mice from a Lethal Cryptosporidium parvum Infection. Antimicrobial Agents and Chemotherapy, 2013, 57, 6063-6073.	3.2	52
62	Rational Development of 4-Aminopyridyl-Based Inhibitors Targeting Trypanosoma cruzi CYP51 as Anti-Chagas Agents. Journal of Medicinal Chemistry, 2013, 56, 7651-7668.	6.4	43
63	Diverse Inhibitor Chemotypes Targeting Trypanosoma cruzi CYP51. PLoS Neglected Tropical Diseases, 2012, 6, e1736.	3.0	54
64	Cruzain. Advances in Experimental Medicine and Biology, 2011, 712, 100-115.	1.6	85
65	Structural Basis for Inhibition of Cathepsin B Drug Target from the Human Blood Fluke, Schistosoma mansoni. Journal of Biological Chemistry, 2011, 286, 35770-35781.	3.4	60
66	The Trypanosoma cruzi Protease Cruzain Mediates Immune Evasion. PLoS Pathogens, 2011, 7, e1002139.	4.7	98
67	In Vitro and In Vivo Studies of the Trypanocidal Properties of WRR-483 against Trypanosoma cruzi. PLoS Neglected Tropical Diseases, 2010, 4, e825.	3.0	66
68	Identification and Optimization of Inhibitors of Trypanosomal Cysteine Proteases: Cruzain, Rhodesain, and TbCatB. Journal of Medicinal Chemistry, 2010, 53, 52-60.	6.4	103
69	A Nonazole CYP51 Inhibitor Cures Chagas' Disease in a Mouse Model of Acute Infection. Antimicrobial Agents and Chemotherapy, 2010, 54, 2480-2488.	3.2	56
70	Complementarity Between a Docking and a High-Throughput Screen in Discovering New Cruzain Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 4891-4905.	6.4	199
71	Trypanosoma cruzi CYP51 Inhibitor Derived from a Mycobacterium tuberculosis Screen Hit. PLoS Neglected Tropical Diseases, 2009, 3, e372.	3.0	60
72	Vinyl Sulfones as Antiparasitic Agents and a Structural Basis for Drug Design. Journal of Biological Chemistry, 2009, 284, 25697-25703.	3.4	234

#	Article	IF	CITATIONS
73	Novel non-peptidic vinylsulfones targeting the S2 and S3 subsites of parasite cysteine proteases. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6218-6221.	2.2	56
74	Divergent Modes of Enzyme Inhibition in a Homologous Structureâ^'Activity Series. Journal of Medicinal Chemistry, 2009, 52, 5005-5008.	6.4	84
75	Development of protease inhibitors for protozoan infections. Current Opinion in Infectious Diseases, 2008, 21, 668-672.	3.1	108
76	RNA Interference of Trypanosoma brucei Cathepsin B and L Affects Disease Progression in a Mouse Model. PLoS Neglected Tropical Diseases, 2008, 2, e298.	3.0	76
77	A Cysteine Protease Inhibitor Cures Chagas' Disease in an Immunodeficient-Mouse Model of Infection. Antimicrobial Agents and Chemotherapy, 2007, 51, 3932-3939.	3.2	163
78	Schistosomiasis Mansoni: Novel Chemotherapy Using a Cysteine Protease Inhibitor. PLoS Medicine, 2007, 4, e14.	8.4	229
79	Chemical Composition and Cruzain Inhibitory Activity of <i>Croton draco</i> Bark Essential Oil from Monteverde, Costa Rica. Natural Product Communications, 2007, 2, 1934578X0700200.	0.5	4
80	Cruzain Inhibitory Activity of Leaf Essential Oils of Neotropical Lauraceae and Essential Oil Components. Natural Product Communications, 2007, 2, 1934578X0700201.	0.5	18
81	3-O-(3′-Hydroxytetradecanoyl)lupeol from Sorocea trophoides Inhibits Cruzain. Natural Product Communications, 2007, 2, 1934578X0700200.	0.5	6
82	Inhibition of Cruzain by Triterpenoids Isolated from a Salacia Species from Monteverde, Costa Rica. Natural Product Communications, 2007, 2, 1934578X0700201.	0.5	5
83	PROTEASES IN PARASITIC DISEASES. Annual Review of Pathology: Mechanisms of Disease, 2006, 1, 497-536.	22.4	341
84	Reversible inhibition of cathepsin L-like proteases by 4-mer pseudopeptides. FEBS Letters, 2001, 507, 362-366.	2.8	8
85	Potent second generation vinyl sulfonamide inhibitors of the trypanosomal cysteine protease cruzain. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2759-2762.	2.2	82
86	Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense. Molecular and Biochemical Parasitology, 2001, 118, 61-73.	1.1	155
87	Aryl ureas represent a new class of anti-trypanosomal agents. Chemistry and Biology, 2000, 7, 733-742.	6.0	77
88	A target within the target: probing cruzain's P1′ site to define structural determinants for the Chagas' disease protease. Structure, 2000, 8, 831-840.	3.3	100
89	The high stability of cruzipain against pH-induced inactivation is not dependent on its C-terminal domain. FEBS Letters, 2000, 469, 29-32.	2.8	7
90	Identification of a cDNA encoding an active asparaginyl endopeptidase ofSchistosoma mansoniand its expression inPichia pastoris1. FEBS Letters, 2000, 466, 244-248.	2.8	64

#	Article	IF	CITATIONS
91	Development of cysteine protease inhibitors as chemotherapy for parasitic diseases: insights on safety, target validation, and mechanism of action. International Journal for Parasitology, 1999, 29, 833-837.	3.1	129
92	A Phenylalanine Hydroxylase Gene from the Nematode C. Elegans is Expressed in the Hypodermis. Journal of Neurogenetics, 1999, 13, 157-180.	1.4	22
93	Expression and alteration of the S2 subsite of the Leishmania major cathepsin B-like cysteine protease. Biochemical Journal, 1999, 340, 113-117.	3.7	35
94	Design and synthesis of dipeptidyl α′,β′-epoxy ketones, potent irreversible inhibitors of the cysteine protease cruzain. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 2809-2812.	2.2	47
95	Substrate inhibition of cruzipain is not affected by the C-terminal domain. FEBS Letters, 1998, 429, 129-133.	2.8	20
96	Cysteine Protease Inhibitors Cure an Experimental Trypanosoma cruzi Infection. Journal of Experimental Medicine, 1998, 188, 725-734.	8.5	375
97	Peptide-fluoromethyl ketones arrest intracellular replication and intercellular transmission of Trypanosoma cruzi. Molecular and Biochemical Parasitology, 1993, 58, 17-24.	1.1	155
98	Tumour necrosis factor α restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature, 1992, 356, 604-607.	27.8	442
99	Recent Insights into the Structure and Function of a Larval Proteinase Involved in Host Infection by a Multicellular Parasite. Experimental Biology and Medicine, 1991, 197, 119-124.	2.4	17
100	Tissue identification and histologic study of six lung specimens from Egyptian mummies. American Journal of Physical Anthropology, 1987, 72, 43-48.	2.1	33
101	Enzyme Histochemical Comparison of Biomphalaria glabrata Amebocytes With Human Granuloma Macrophages. Journal of Leukocyte Biology, 1985, 37, 341-347.	3.3	16
102	Hormone receptors in hepatoblastoma: A demonstration of both estrogen and progesterone receptors. Cancer, 1982, 50, 1828-1832.	4.1	14
103	Murine embryonal carcinoma hybrids: Decreased ability to spontaneously differentiate as a dominant trait. Journal of Cellular Physiology, 1981, 109, 195-204.	4.1	12