
Shengchang Xiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/486213/publications.pdf Version: 2024-02-01

SHENCCHANC XIANC

#	Article	IF	CITATIONS
1	Structural Isomerization in Cu(I) Clusters: Tracing the Cu Thermal Migration Paths and Unveiling the Structure-Dependent Photoluminescence. CCS Chemistry, 2023, 5, 350-360.	7.8	7
2	Twoâ€dimensional Metalâ€organic Frameworks for Electrochemical CO ₂ Reduction Reaction. ChemCatChem, 2022, 14, .	3.7	17
3	Multifunctional anionic metal-organic frameworks enhancing stability of perovskite solar cells. Chemical Engineering Journal, 2022, 433, 133587.	12.7	11
4	Mixing halogens improves the passivation effects of amine halide on perovskite. Electrochimica Acta, 2022, 405, 139782.	5.2	2
5	In Situ Etching Strategy to Controllably Fabricate Single-Crystal Metal–Organic Framework Microtubes. Crystal Growth and Design, 2022, 22, 1521-1527.	3.0	3
6	Single-phase proton- and electron-conducting Ag-organic coordination polymers for efficient CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 3216-3225.	10.3	7
7	A Microporous Metalâ€Organic Framework with Channels Constructed from Nonpolar Aromatic Rings for the Selective Separation of Ethane/Ethylene Mixtures. ChemPlusChem, 2022, 87, e202100482.	2.8	1
8	Amidinium sulfonate hydrogen-bonded organic framework with fluorescence amplification function for sensitive aniline detection. Chinese Chemical Letters, 2022, 33, 4317-4320.	9.0	18
9	Electrostatic force-driven lattice water bridging to stabilize a partially charged indium MOF for efficient separation of C ₂ H ₂ /CO ₂ mixtures. Journal of Materials Chemistry A, 2022, 10, 9363-9369.	10.3	17
10	Greatness in Simplicity: Efficient Red Room-Temperature Phosphorescence from Simple Halogenated Maleimides with a 2D Layered Structure. ACS Applied Materials & Interfaces, 2022, 14, 14703-14711.	8.0	15
11	Two Water Stable Phosphateâ€Amidinium Based Hydrogenâ€Bonded Organic Framework with Proton Conduction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	1.2	5
12	Framework-Shrinkage-Induced Wavelength-Switchable Lasing from a Single Hydrogen-Bonded Organic Framework Microcrystal. Journal of Physical Chemistry Letters, 2022, 13, 130-135.	4.6	24
13	Hydrogenâ€Bonded Organic Frameworks: Functionalized Construction Strategy by Nitrogenâ€Containing Functional Group. Chemistry - A European Journal, 2022, 28, .	3.3	20
14	A Microporous Hydrogen-Bonded Organic Framework for Efficient Xe/Kr Separation. ACS Applied Materials & Interfaces, 2022, 14, 19623-19628.	8.0	44
15	Switched Proton Conduction in Metal–Organic Frameworks. Jacs Au, 2022, 2, 1043-1053.	7.9	30
16	Isoreticular Double Interpenetrating Copper–Pyrazolate–Carboxylate Frameworks for Efficient CO ₂ Capture. Crystal Growth and Design, 2022, 22, 3853-3861.	3.0	5
17	A photochromic NDI-based framework for the facile hydrazine sensor. Inorganic Chemistry Communication, 2022, 141, 109497.	3.9	3
18	Multimode stimuli responsive dual-state organic room temperature phosphorescence from a phenanthrene derivative. Chemical Engineering Journal, 2022, 444, 136629.	12.7	32

#	Article	IF	CITATIONS
19	An Ultramicroporous Hydrogenâ€Bonded Organic Framework Exhibiting High C ₂ H ₂ /CO ₂ Separation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	48
20	High proton conductivity in metalloring-cluster based metal-organic nanotubes. Nano Research, 2021, 14, 387-391.	10.4	19
21	A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Research, 2021, 14, 507-511.	10.4	57
22	Simultaneous defect passivation and hole mobility enhancement of perovskite solar cells by incorporating anionic metal-organic framework into hole transport materials. Chemical Engineering Journal, 2021, 408, 127328.	12.7	26
23	Controlled Shape Evolution of Pureâ€MOF 1D Microcrystals towards Efficient Waveguide and Laser Applications. Chemistry - A European Journal, 2021, 27, 3297-3301.	3.3	14
24	Mitigation of vacancy with ammonium salt-trapped ZIF-8 capsules for stable perovskite solar cells through simultaneous compensation and loss inhibition. Nanoscale Advances, 2021, 3, 3554-3562.	4.6	13
25	Two Tb-metal organic frameworks with different metal cluster nodes for C ₂ H ₂ /CO ₂ separation. Dalton Transactions, 2021, 50, 4932-4935.	3.3	5
26	Dual-functional hydrogen-bonded organic frameworks for aniline and ultraviolet sensitive detection. Chinese Chemical Letters, 2021, 32, 3109-3112.	9.0	23
27	Lithium–Sulfur Batteries: Metallic MoS ₂ Nanoflowers Decorated Graphene Nanosheet Catalytically Boosts the Volumetric Capacity and Cycle Life of Lithium–Sulfur Batteries (Adv. Energy) Tj ETQq	1 1 097843	14 4 gBT /Over
28	Separation and Purification of Xylene by Self-Assembly of a Tunable N → B Adduct. Crystal Growth and Design, 2021, 21, 3168-3174.	3.0	4
29	Threefold Collaborative Stabilization of Ag ₁₄ â€Nanorods by Hydrophobic Ti ₁₆ â€Oxo Clusters and Alkynes: Designable Assembly and Solidâ€State Opticalâ€Limiting Application. Angewandte Chemie - International Edition, 2021, 60, 12949-12954.	13.8	38
30	Triazine Based MOFs with Abundant N Sites for Selective Nitrobenzene Detection. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1301-1304.	1.2	13
31	Hydrogen-Bonded Organic Framework Microlasers with Conformation-Induced Color-Tunable Output. ACS Applied Materials & Interfaces, 2021, 13, 28662-28667.	8.0	39
32	Broadband emission of corner-sharing halometalate templated by benzyltrimethylammonium. Inorganic Chemistry Communication, 2021, 129, 108622.	3.9	2
33	Ethylene/ethane separation in a stable hydrogen-bonded organic framework through a gating mechanism. Nature Chemistry, 2021, 13, 933-939.	13.6	235
34	Anhydrous Proton Conduction in Crystalline Porous Materials with a Wide Working Temperature Range. ACS Applied Materials & Interfaces, 2021, 13, 41363-41371.	8.0	15
35	Metallic MoS ₂ Nanoflowers Decorated Graphene Nanosheet Catalytically Boosts the Volumetric Capacity and Cycle Life of Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2003718.	19.5	105
36	Pore-space-partitioned MOF separator promotes high-sulfur-loading Li–S batteries with intensified rate capability and cycling life. Journal of Materials Chemistry A, 2021, 9, 26929-26938.	10.3	27

#	Article	IF	CITATIONS
37	Efficient Separation of Acetylene-Containing Mixtures Using ZIF-8 Membranes. ACS Omega, 2021, 6, 33018-33023.	3.5	9
38	Microporous polycarbazole frameworks with large conjugated ï€ systems for cyclohexane separation from cyclohexane-containing mixtures. New Journal of Chemistry, 2021, 45, 22437-22443.	2.8	6
39	A microporous metal–organic framework with naphthalene diimide groups for high methane storage. Dalton Transactions, 2020, 49, 3658-3661.	3.3	31
40	Microporous Metal-Organic Framework Materials for Gas Separation. CheM, 2020, 6, 337-363.	11.7	528
41	A metal-organic framework with double interpenetrated frameworks for effective C2H2/CO2 separation. Inorganic Chemistry Communication, 2020, 112, 107721.	3.9	4
42	MOFs-Derived Nano-CuO Modified Electrode as a Sensor for Determination of Hydrazine Hydrate in Aqueous Medium. Sensors, 2020, 20, 140.	3.8	13
43	Design and applications of water-stable metal-organic frameworks: status and challenges. Coordination Chemistry Reviews, 2020, 423, 213507.	18.8	138
44	Hydrogen-Bonded Organic Frameworks as a Tunable Platform for Functional Materials. Journal of the American Chemical Society, 2020, 142, 14399-14416.	13.7	444
45	LiOâ€66/GO Composites with Improved Electrochemical Properties for Effective Detection of Phosphite(P(III)) in Phosphate(P(V)) Buffer Solutions. ChemistrySelect, 2020, 5, 10855-10862.	1.5	2
46	Microporous Hydrogen-Bonded Organic Framework for Highly Efficient Turn-Up Fluorescent Sensing of Aniline. Journal of the American Chemical Society, 2020, 142, 12478-12485.	13.7	201
47	Isostructural MOFs with Higher Proton Conductivity for Improved Oxygen Evolution Reaction Performance. ACS Applied Materials & amp; Interfaces, 2020, 12, 16367-16375.	8.0	28
48	Preparation and characterization of metal–organic frameworks and their composite Eu ₂ O ₃ @[Zn ₂ (bdc) ₂ dabco] (ZBDh) <i>via</i> pulsed laser ablation in a flowing liquid. CrystEngComm, 2020, 22, 3188-3197.	2.6	2
49	Metal–Organic Frameworks as a Versatile Platform for Proton Conductors. Advanced Materials, 2020, 32, e1907090.	21.0	255
50	Inserting V-Shaped Bidentate Partition Agent into MIL-88-Type Framework for Acetylene Separation from Acetylene-Containing Mixtures. Crystal Growth and Design, 2020, 20, 2099-2105.	3.0	17
51	Pure Metal–Organic Framework Microlasers with Controlled Cavity Shapes. Nano Letters, 2020, 20, 2020-2025.	9.1	31
52	Solvent-Assisted Modification to Enhance Proton Conductivity and Water Stability in Metal Phosphonates. Inorganic Chemistry, 2020, 59, 3518-3522.	4.0	29
53	A novel hydrogen-bonded organic framework for the sensing of two representative organic arsenics. Canadian Journal of Chemistry, 2020, 98, 352-357.	1.1	22
54	A microporous metal-organic framework with basic sites for efficient C2H2/CO2 separation. Journal of Solid State Chemistry, 2020, 284, 121209.	2.9	13

#	Article	IF	CITATIONS
55	The dual-function of hematite-based photoelectrochemical sensor for solar-to-electricity conversion and self-powered glucose detection. Sensors and Actuators B: Chemical, 2020, 310, 127842.	7.8	63
56	Integrating the Pillared-Layer Strategy and Pore-Space Partition Method to Construct Multicomponent MOFs for C ₂ H ₂ /CO ₂ Separation. Journal of the American Chemical Society, 2020, 142, 9258-9266.	13.7	141
57	Metal organic frameworks composite Eu2O3@[Zn2(1,4-ndc)2dabco] synthesized by pulsed laser ablation in flowing liquid and its fluorescent sensing of fatty alcohol with different branch chains. Optical Materials, 2020, 105, 109886.	3.6	4
58	A novel mesoporous hydrogen-bonded organic framework with high porosity and stability. Chemical Communications, 2020, 56, 66-69.	4.1	76
59	Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Science Advances, 2019, 5, eaaw4515.	10.3	90
60	Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem, 2019, 1, 100006.	19.1	434
61	Synthesis of Seven-Membered Azepino[3,2,1- <i>hi</i>]indoles via Rhodium-Catalyzed Regioselective C–H Activation/1,8-Diazabicyclo[5.4.0]undec-7-ene-Catalyzed Intramolecular Amidation of 7-Phenylindoles in One Pot. Journal of Organic Chemistry, 2019, 84, 14701-14711.	3.2	15
62	A metal organic cage with semi-rigid ligand for heterogeneous alcoholysis of epoxides. Inorganic Chemistry Communication, 2019, 108, 107540.	3.9	8
63	Our journey of developing multifunctional metal-organic frameworks. Coordination Chemistry Reviews, 2019, 384, 21-36.	18.8	126
64	Metal–Organic Framework with Rich Accessible Nitrogen Sites for Highly Efficient CO ₂ Capture and Separation. Inorganic Chemistry, 2019, 58, 7754-7759.	4.0	47
65	Enhancement of Intrinsic Proton Conductivity and Aniline Sensitivity by Introducing Dye Molecules into the MOF Channel. ACS Applied Materials & amp; Interfaces, 2019, 11, 16490-16495.	8.0	65
66	Isomorphic MOF-derived porous carbon materials as electrochemical sensor for simultaneous determination of hydroquinone and catechol. Journal of Applied Electrochemistry, 2019, 49, 563-574.	2.9	17
67	Pore Space Partition within a Metal–Organic Framework for Highly Efficient C ₂ H ₂ /CO ₂ Separation. Journal of the American Chemical Society, 2019, 141, 4130-4136.	13.7	338
68	MOF/PAN nanofiber-derived N-doped porous carbon materials with excellent electrochemical activity for the simultaneous determination of catechol and hydroquinone. New Journal of Chemistry, 2019, 43, 3913-3920.	2.8	35
69	Microporous Metal–Organic Framework with Dual Functionalities for Efficient Separation of Acetylene from Light Hydrocarbon Mixtures. ACS Sustainable Chemistry and Engineering, 2019, 7, 4897-4902.	6.7	65
70	Steric-Hindrance-Controlled Laser Switch Based on Pure Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2019, 141, 19959-19963.	13.7	57
71	Metalo Hydrogenâ€Bonded Organic Frameworks (MHOFs) as New Class of Crystalline Materials for Protonic Conduction. Chemistry - A European Journal, 2019, 25, 1691-1695.	3.3	92
72	MOF-derived binary mixed carbon/metal oxide porous materials for constructing simultaneous determination of hydroquinone and catechol sensor. Journal of Solid State Electrochemistry, 2019, 23, 81-89.	2.5	47

#	Article	IF	CITATIONS
73	Exploration of porous metal–organic frameworks for gas separation and purification. Coordination Chemistry Reviews, 2019, 378, 87-103.	18.8	538
74	Sulfonated periodic-mesoporous-organosilicas column for selective separation of C 2 H 2 /CH 4 mixtures. Journal of Solid State Chemistry, 2018, 264, 113-118.	2.9	12
75	Facile synthesis of oxidized activated carbons for high-selectivity and low-enthalpy CO ₂ capture from flue gas. New Journal of Chemistry, 2018, 42, 4495-4500.	2.8	7
76	Rhodiumâ€Catalyzed Regioselective <i>Ortho</i> Câ^'H Olefination of 2â€Arylindoles via NHâ€Indoleâ€Directed Câ^'H Bond Cleavage. Advanced Synthesis and Catalysis, 2018, 360, 972-984.	4.3	30
77	Microporous metal–organic frameworks with open metal sites and π-Lewis acidic pore surfaces for recovering ethylene from polyethylene off-gas. Journal of Materials Chemistry A, 2018, 6, 20822-20828.	10.3	30
78	Two water-stable lanthanide metal–organic frameworks with oxygen-rich channels for fluorescence sensing of Fe(<scp>iii</scp>) ions in aqueous solution. Dalton Transactions, 2018, 47, 16190-16196.	3.3	101
79	Photochromic naphthalene diimide Cd-MOFs based on different second dicarboxylic acid ligands. CrystEngComm, 2018, 20, 7567-7573.	2.6	43
80	Reticular Chemistry of Multifunctional Metalâ€Organic Framework Materials. Israel Journal of Chemistry, 2018, 58, 949-961.	2.3	24
81	Robustness, Selective Gas Separation, and Nitrobenzene Sensing on Two Isomers of Cadmium Metal–Organic Frameworks Containing Various Metal–O–Metal Chains. Inorganic Chemistry, 2018, 57, 12961-12968.	4.0	87
82	Thermal Conversion of MOF@MOF: Synthesis of an Nâ€Đoped Carbon Material with Excellent ORR Performance. ChemPlusChem, 2018, 83, 1044-1051.	2.8	18
83	Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 2018, 362, 443-446.	12.6	763
84	An antiferromagnetic metalloring pyrazolate (Pz) framework with [Cu ₁₂ (ݼ ₂ -OH) ₁₂ (Pz) ₁₂] nodes for separation of C ₂ H ₂ /CH ₄ mixture. Journal of Materials Chemistry A, 2018, 6, 19681-19688.	10.3	21
85	A naphthalene diimide-based MOF with mog net featuring photochromic behaviors and high stability. Inorganic Chemistry Communication, 2018, 93, 105-109.	3.9	19
86	Mixed-Valence Cobalt(II/III) Metal–Organic Framework for Ammonia Sensing with Naked-Eye Color Switching. ACS Applied Materials & Interfaces, 2018, 10, 27465-27471.	8.0	75
87	Loading Acid–Base Pairs into Periodic Mesoporous Organosilica for High Anhydrous Proton Conductivity over a Wide Operating Temperature Window. ACS Applied Energy Materials, 2018, 1, 5068-5074.	5.1	31
88	Additive-Induced Supramolecular Isomerism and Enhancement of Robustness in Co(II)-Based MOFs for Efficiently Trapping Acetylene from Acetylene-Containing Mixtures. ACS Applied Materials & Interfaces, 2018, 10, 30912-30918.	8.0	67
89	Enhanced Intrinsic Proton Conductivity of Metal–Organic Frameworks by Tuning the Degree of Interpenetration. Crystal Growth and Design, 2018, 18, 3724-3728.	3.0	62
90	Highly Selective Adsorption of C ₂ /C ₁ Mixtures and Solvent-Dependent Thermochromic Properties in Metal–Organic Frameworks Containing Infinite Copper-Halogen Chains. Crystal Growth and Design, 2017, 17, 2081-2089.	3.0	48

#	Article	IF	CITATIONS
91	Rationally tuning host–guest interactions to free hydroxide ions within intertrimerically cuprophilic metal–organic frameworks for high OH ^{â^'} conductivity. Journal of Materials Chemistry A, 2017, 5, 7816-7824.	10.3	71
92	A Cd(II) metal–organic framework based on semi-rigid ligand 3,5-(4-carboxybenzyloxy) benzoic acid with high stability by intramolecular hydrogen-bonding. Inorganic Chemistry Communication, 2017, 80, 49-52.	3.9	11
93	A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules. Journal of Materials Chemistry A, 2017, 5, 8292-8296.	10.3	78
94	Straightforward Loading of Imidazole Molecules into Metal–Organic Framework for High Proton Conduction. Journal of the American Chemical Society, 2017, 139, 15604-15607.	13.7	290
95	A Facile Approach to Preparing Molecularly Imprinted Chitosan for Detecting 2,4,6-Tribromophenol with a Widely Linear Range. Environments - MDPI, 2017, 4, 30.	3.3	4
96	Molecularly Imprinted Nanofiber Film for Sensitive Sensing 2,4,6-Tribromophenol. Polymers, 2016, 8, 222.	4.5	9
97	Direct Evidence of CO ₂ Capture under Low Partial Pressure on a Pillared Metal–Organic Framework with Improved Stabilization through Intramolecular Hydrogen Bonding. ChemPlusChem, 2016, 81, 850-856.	2.8	21
98	Extraordinary Separation of Acetyleneâ€Containing Mixtures with Microporous Metal–Organic Frameworks with Open O Donor Sites and Tunable Robustness through Control of the Helical Chain Secondary Building Units. Chemistry - A European Journal, 2016, 22, 5676-5683.	3.3	113
99	A Hierarchically Porous Metalâ€Organic Framework from Semirigid Ligand for Gas Adsorption. Chinese Journal of Chemistry, 2016, 34, 215-219.	4.9	17
100	Low Cytotoxic Metal–Organic Frameworks as Temperatureâ€Responsive Drug Carriers. ChemPlusChem, 2016, 81, 804-810.	2.8	67
101	Low Cytotoxic Metal-Organic Frameworks as Temperature-Responsive Drug Carriers. ChemPlusChem, 2016, 81, 668-668.	2.8	10
102	High proton conductivity in an unprecedented anionic metalloring organic framework (MROF) containing novel metalloring clusters with the largest diameter. Journal of Materials Chemistry A, 2016, 4, 18742-18746.	10.3	44
103	Rhodium-Catalyzed NH-Indole-Directed C–H Carbonylation with Carbon Monoxide: Synthesis of 6 <i>H</i> -lsoindolo[2,1- <i>a</i>]indol-6-ones. Journal of Organic Chemistry, 2016, 81, 12135-12142.	3.2	47
104	A Threeâ€Dimensional TetraphenylÃetheneâ€Based Metal–Organic Framework for Selective Gas Separation and Luminescence Sensing of Metal Ions. European Journal of Inorganic Chemistry, 2016, 2016, 4470-4475.	2.0	20
105	Microporous Metal–Organic Framework Stabilized by Balanced Multiple Host–Couteranion Hydrogen-Bonding Interactions for High-Density CO ₂ Capture at Ambient Conditions. Inorganic Chemistry, 2016, 55, 292-299.	4.0	82
106	Metal–organic frameworks with a large breathing effect to host hydroxyl compounds for high anhydrous proton conductivity over a wide temperature range from subzero to 125 °C. Journal of Materials Chemistry A, 2016, 4, 4062-4070.	10.3	109
107	Ultrasensitive sensing of tris(2,3-dibromopropyl) isocyanurate based on the synergistic effect of amino and hydroxyl groups of a molecularly imprinted poly(o-aminophenol) film. New Journal of Chemistry, 2016, 40, 1649-1654.	2.8	7
108	40-Fold Enhanced Intrinsic Proton Conductivity in Coordination Polymers with the Same Proton-Conducting Pathway by Tuning Metal Cation Nodes. Inorganic Chemistry, 2016, 55, 983-986.	4.0	68

#	Article	IF	CITATIONS
109	Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nature Communications, 2015, 6, 7328.	12.8	404
110	Sensing 2,4,6-tribromophenol based on molecularly imprinted technology. Monatshefte Für Chemie, 2015, 146, 485-491.	1.8	4
111	High Anhydrous Proton Conductivity of Imidazole-Loaded Mesoporous Polyimides over a Wide Range from Subzero to Moderate Temperature. Journal of the American Chemical Society, 2015, 137, 913-918.	13.7	238
112	A Flexible Microporous Hydrogen-Bonded Organic Framework for Gas Sorption and Separation. Journal of the American Chemical Society, 2015, 137, 9963-9970.	13.7	360
113	A 3D-diamond-like metal–organic framework: Crystal structure, nonlinear optical effect and high thermal stability. Inorganic Chemistry Communication, 2015, 60, 19-22.	3.9	12
114	Microporous Metal–Organic Framework with Lantern-like Dodecanuclear Metal Coordination Cages as Nodes for Selective Adsorption of C2/C1 Mixtures and Sensing of Nitrobenzene. Crystal Growth and Design, 2015, 15, 3847-3852.	3.0	42
115	Novel Microporous Metal–Organic Framework Exhibiting High Acetylene and Methane Storage Capacities. Inorganic Chemistry, 2015, 54, 4377-4381.	4.0	36
116	A microporous metal–organic framework with polarized trifluoromethyl groups for high methane storage. Chemical Communications, 2015, 51, 14789-14792.	4.1	40
117	Cobalt–citrate framework armored with graphene oxide exhibiting improved thermal stability and selectivity for biogas decarburization. Journal of Materials Chemistry A, 2015, 3, 593-599.	10.3	71
118	A Stable Microporous Mixedâ€Metal Metal–Organic Framework with Highly Active Cu ²⁺ Sites for Efficient Crossâ€Dehydrogenative Coupling Reactions. Chemistry - A European Journal, 2014, 20, 1447-1452.	3.3	55
119	A Homochiral Microporous Hydrogen-Bonded Organic Framework for Highly Enantioselective Separation of Secondary Alcohols. Journal of the American Chemical Society, 2014, 136, 547-549.	13.7	292
120	A two dimensional microporous metal-organic framework for selective gas separation. Inorganic Chemistry Communication, 2014, 50, 106-109.	3.9	10
121	Perspective of microporous metal–organic frameworks for CO ₂ capture and separation. Energy and Environmental Science, 2014, 7, 2868.	30.8	693
122	Waterâ€compatible imprinted polymers based on CS <i>@</i> SiO ₂ particles for selective recognition of naringin. Journal of Applied Polymer Science, 2014, 131, .	2.6	12
123	Synthesis, crystal structure, magnetic and electrochemical studies of two copper complexes with carboxylate rich dinucleating ligand. Inorganica Chimica Acta, 2013, 394, 220-228.	2.4	16
124	Enantioselective ring-opening of meso-epoxides by aromatic amines catalyzed by a homochiral metal–organic framework. Chemical Communications, 2013, 49, 9836.	4.1	60
125	A cationic microporous metal–organic framework for highly selective separation of small hydrocarbons at room temperature. Journal of Materials Chemistry A, 2013, 1, 9916.	10.3	83
126	Metastable Interwoven Mesoporous Metal–Organic Frameworks. Inorganic Chemistry, 2013, 52, 11580-11584.	4.0	60

#	Article	IF	CITATIONS
127	The cooperative utilization of imprinting, electro-spinning and a pore-forming agent to synthesise β-cyclodextrin polymers with enhanced recognition of naringin. RSC Advances, 2013, 3, 25396.	3.6	12
128	A microporous metal–organic framework assembled from an aromatic tetracarboxylate for H2 purification. Journal of Materials Chemistry A, 2013, 1, 2543.	10.3	62
129	A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for highly selective C ₂ H ₂ /CH ₄ and C ₂ H ₂ /CO ₂ gas separation at room temperature. Journal of Materials Chemistry A. 2013. 1. 77-81.	10.3	148
130	A microporous metal–organic framework of a rare sty topology for high CH4 storage at room temperature. Chemical Communications, 2013, 49, 2043.	4.1	61
131	A microporous metal–organic framework with Lewis basic pyridyl sites for selective gas separation of C2H2/CH4 and CO2/CH4 at room temperature. CrystEngComm, 2013, 15, 5232.	2.6	24
132	A robust doubly interpenetrated metal–organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chemical Communications, 2012, 48, 6493.	4.1	224
133	A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas. Chemical Communications, 2012, 48, 10856.	4.1	134
134	A series of goblet-like heterometallic pentanuclear [LnIIICuII4] clusters featuring ferromagnetic coupling and single-molecule magnet behavior. Chemical Communications, 2012, 48, 10736.	4.1	35
135	Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nature Communications, 2012, 3, 954.	12.8	716
136	Three Novel Isomeric Zinc Metal–Organic Frameworks from a Tetracarboxylate Linker. Inorganic Chemistry, 2012, 51, 7066-7074.	4.0	36
137	Origin of Long-Range Ferromagnetic Ordering in Metal–Organic Frameworks with Antiferromagnetic Dimeric-Cu(II) Building Units. Journal of the American Chemical Society, 2012, 134, 17286-17290.	13.7	86
138	Homochiral coordination polymers constructed from aminocarboxylate derivates: Effect of bipyridine on the amidation reaction. Journal of Solid State Chemistry, 2012, 192, 255-262.	2.9	13
139	Triple Framework Interpenetration and Immobilization of Open Metal Sites within a Microporous Mixed Metal–Organic Framework for Highly Selective Gas Adsorption. Inorganic Chemistry, 2012, 51, 4947-4953.	4.0	83
140	Interplay of Metalloligand and Organic Ligand to Tune Micropores within Isostructural Mixed-Metal Organic Frameworks (M′MOFs) for Their Highly Selective Separation of Chiral and Achiral Small Molecules. Journal of the American Chemical Society, 2012, 134, 8703-8710.	13.7	326
141	A Microporous Metal–Organic Framework for Highly Selective Separation of Acetylene, Ethylene, and Ethane from Methane at Room Temperature. Chemistry - A European Journal, 2012, 18, 613-619.	3.3	204
142	High Separation Capacity and Selectivity of C ₂ Hydrocarbons over Methane within a Microporous Metal–Organic Framework at Room Temperature. Chemistry - A European Journal, 2012, 18, 1901-1904.	3.3	142
143	A robust near infrared luminescent ytterbium metal–organic framework for sensing of small molecules. Chemical Communications, 2011, 47, 5551-5553.	4.1	345
144	Microporous metal–organic frameworks for acetylene storage and separation. CrystEngComm, 2011, 13, 5983.	2.6	163

#	Article	IF	CITATIONS
145	Three-Dimensional Pillar-Layered Copper(II) Metalâ^'Organic Framework with Immobilized Functional OH Groups on Pore Surfaces for Highly Selective CO ₂ /CH ₄ and C ₂ H ₂ /CH ₄ Gas Sorption at Room Temperature. Inorganic Chemistry, 2011, 50, 3442-3446.	4.0	115
146	A Microporous Hydrogen-Bonded Organic Framework for Highly Selective C ₂ H ₂ /C ₂ H ₄ Separation at Ambient Temperature. Journal of the American Chemical Society, 2011, 133, 14570-14573.	13.7	559
147	A New Approach to Construct a Doubly Interpenetrated Microporous Metal–Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules. Chemistry - A European Journal, 2011, 17, 7817-7822.	3.3	137
148	Hydrogen-bonding 2D metal–organic solids as highly robust and efficient heterogeneous green catalysts for Biginelli reaction. Tetrahedron Letters, 2011, 52, 6220-6222.	1.4	68
149	Significantly Enhanced CO ₂ /CH ₄ Separation Selectivity within a 3D Prototype Metal–Organic Framework Functionalized with OH Groups on Pore Surfaces at Room Temperature. European Journal of Inorganic Chemistry, 2011, 2011, 2227-2231.	2.0	56
150	A Metal–Organic Framework with Optimized Open Metal Sites and Pore Spaces for High Methane Storage at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 3178-3181.	13.8	340
151	Functional Mixed Metal–Organic Frameworks with Metalloligands. Angewandte Chemie - International Edition, 2011, 50, 10510-10520.	13.8	384
152	Metalâ^'Organic Frameworks with Functional Pores for Recognition of Small Molecules. Accounts of Chemical Research, 2010, 43, 1115-1124.	15.6	1,919
153	A Microporous Metal <i>–</i> Organic Framework with Immobilized –OH Functional Groups within the Pore Surfaces for Selective Gas Sorption. European Journal of Inorganic Chemistry, 2010, 2010, 3745-3749.	2.0	97
154	Open Metal Sites within Isostructural Metal–Organic Frameworks for Differential Recognition of Acetylene and Extraordinarily High Acetylene Storage Capacity at Room Temperature. Angewandte Chemie - International Edition, 2010, 49, 4615-4618.	13.8	344
155	A rod packing microporous metal–organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. Chemical Communications, 2010, 46, 7205.	4.1	239
156	Two Chiral Nonlinear Optical Coordination Networks Based on Interwoven Two-Dimensional Square Grids of Double Helices. Crystal Growth and Design, 2010, 10, 5291-5296.	3.0	44
157	A Robust Highly Interpenetrated Metalâ~'Organic Framework Constructed from Pentanuclear Clusters for Selective Sorption of Gas Molecules. Inorganic Chemistry, 2010, 49, 8444-8448.	4.0	100
158	A New Multidentate Hexacarboxylic Acid for the Construction of Porous Metalâ^'Organic Frameworks of Diverse Structures and Porosities. Crystal Growth and Design, 2010, 10, 2775-2779.	3.0	48
159	A Rare Uninodal 9-Connected Metalâ^'Organic Framework with Permanent Porosity. Crystal Growth and Design, 2010, 10, 2372-2375.	3.0	71
160	A microporous luminescent metal–organic framework for highly selective and sensitive sensing of Cu2+ in aqueous solution. Chemical Communications, 2010, 46, 5503.	4.1	384
161	Selective gas adsorption within a five-connected porous metal–organic framework. Journal of Materials Chemistry, 2010, 20, 3984.	6.7	58
162	Structural Diversity of Infinite 3d–4f Heterometallic Cluster Compounds Driven by Various Lanthanide Radii. Chemistry - A European Journal, 2009, 15, 12496-12502.	3.3	54

#	Article	IF	CITATIONS
163	Reversible Two-Dimensionalâ^'Three Dimensional Framework Transformation within a Prototype Metalâ^'Organic Framework. Crystal Growth and Design, 2009, 9, 5293-5296.	3.0	96
164	Novel Structures and Luminescence Properties of Lanthanide Coordination Polymers with a Novel Flexible Polycarboxylate Ligand. Crystal Growth and Design, 2009, 9, 5128-5134.	3.0	88
165	New Prototype Isoreticular Metalâ^'Organic Framework Zn ₄ O(FMA) ₃ for Gas Storage. Inorganic Chemistry, 2009, 48, 4649-4651.	4.0	72
166	A new MOF-505 analog exhibiting high acetylene storage. Chemical Communications, 2009, , 7551.	4.1	231
167	Controllable Assembly, Structures, and Properties of Lanthanide–Transition Metal–Amino Acid Clusters. Structure and Bonding, 2009, , 161-206.	1.0	8
168	Exceptionally High Acetylene Uptake in a Microporous Metalâ~'Organic Framework with Open Metal Sites. Journal of the American Chemical Society, 2009, 131, 12415-12419.	13.7	510
169	Synthesis, Structure, and Magnetic Properties of Three Chiral Sodium-Centered Polynuclear Copper(II) Clusters withL-Alanine. European Journal of Inorganic Chemistry, 2008, 2008, 1141-1146.	2.0	14
170	Wavelengthâ€Ðependent Photochromic Inorganic–Organic Hybrid Based on a 3D Iodoplumbate Openâ€Framework Material. Angewandte Chemie - International Edition, 2008, 47, 4149-4152.	13.8	191
171	Self-Assembly of Luminescent Sn(IV)/Cu/S Clusters Using Metal Thiolates as Metalloligands. Inorganic Chemistry, 2008, 47, 4054-4059.	4.0	28
172	Synthesis and characterization of vanadium(III) and vanadium(IV) polymers containing 3,5-pyrazoledicarboxylato. Journal of Coordination Chemistry, 2008, 61, 3556-3567.	2.2	4
173	{[Cu(mtz)]3(Cul)}n: An Unprecedented Non-interpenetrated (123)(122·14)3Network with Triple-Stranded Helices. Inorganic Chemistry, 2007, 46, 497-500.	4.0	45
174	A Fan-Shaped Polynuclear Gd6Cu12 Amino Acid Cluster:  A "Hollow―and Ferromagnetic [Gd6(μ3-OH)8 Octahedral Core Encapsulated by Six [Cu2] Glycinato Blade Fragments. Journal of the American Chemical Society, 2007, 129, 15144-15146.	8] 13.7	128
175	Solvothermal Synthesis, Crystal Structure, and Thermal Stability of Three-Layered Thioantimonate(III) Complexes: [Ni(C3H10N2)3]Sb4S7, [C4H14N2]Sb8S13·H2O, and [C6H18N2]Sb10S16·H2O. European Journa Inorganic Chemistry, 2007, 2007, 1606-1612.	l ø fo	32
176	A convenient method for the conversion of [Sn3S4]2â^' to [Sn3S3(μ3-OH)]â^': Syntheses, structures and characterizations of (Bu4N)[Sn3(μ3-OH)S3(edt)3]·DMF and (Bu4N)[Sn3(μ3-OH)S3(edt)3]·H2O (edt=1,2-ethanedithiolate). Polyhedron, 2007, 26, 1098-1104.	2.2	8
177	Syntheses, crystal structures, and properties of complexes constructed with polybenzoate and 2,2′-bibenzimidazole. CrystEngComm, 2006, 8, 281.	2.6	47
178	Rational Design of New Bright Luminescent Zinc Diphosphonates with 12-Member Ring Channels. Inorganic Chemistry, 2006, 45, 5254-5256.	4.0	20
179	A New Type of Hybrid Magnetic Semiconductor Based upon Polymeric Iodoplumbate and Metalâ^'Organic Complexes as Templates. Inorganic Chemistry, 2006, 45, 1972-1977.	4.0	81
180	Syntheses, Structures, and Properties of High-Nuclear 3dâ^'4f Clusters with Amino Acid as Ligand: {Gd6Cu24}, {Tb6Cu26}, and {(Ln6Cu24)2Cu} (Ln= Sm, Gd). Inorganic Chemistry, 2006, 45, 7173-7181.	4.0	102

#	Article	IF	CITATIONS
181	Assembly of a Heterometallic Polynuclear SnIVâ~'CuICluster Based on Sn(edt)2(edt =) Tj ETQq1 1 0.784314 rgBT	/Overlock 4.0	10 Tf 50 74
182	Two Chiral Metal Clusters Derived from Nucleophilic Addition ofl-proline to Di-2-pyridyl Ketone. Inorganic Chemistry, 2006, 45, 6577-6579.	4.0	35
183	Synthesis and characterization of a novel 3D copper(I) coordination polymer with a ligand generated in situ. Inorganic Chemistry Communication, 2006, 9, 1304-1307.	3.9	20
184	Syntheses and characterization of two novel heptanuclear trigonal prismatic LnNi6 clusters with different terminal ligands. Polyhedron, 2006, 25, 1-8.	2.2	17
185	Three new cubane-like transition metal complexes of di-2-pyridyl ketone in gem-diol form: Syntheses, crystal structures and properties. Polyhedron, 2006, 25, 1618-1624.	2.2	29
186	A New Spherical Metallacryptate Compound [Na{Cu6(Thr)8(H2O)2(ClO4)4}]·ClO4·5 H2O: Magnetic Properties and DFT Calculations. European Journal of Inorganic Chemistry, 2005, 2005, 2706-2713.	2.0	16
187	A 3D Canted Antiferromagnetic Porous Metalâ^'Organic Framework with Anatase Topology through Assembly of an Analogue of Polyoxometalate. Journal of the American Chemical Society, 2005, 127, 16352-16353.	13.7	282
188	Assembled bright green fluorescent zinc coordination polymer. Chemical Communications, 2005, , 5292.	4.1	58
189	Syntheses, Characterization, and Magnetic Properties of Four New Layered Transition-Metal Hydroxylâ^'Carboxylateâ^'Phosphonates:  [M(CH(OH)(CO2)(PO3H))(H2O)2] (M = Mn, Fe, Co, Zn). Crystal Growth and Design, 2005, 5, 1795-1799.	3.0	36
190	Syntheses, characterization and electrical property of a new silver diphosphonate with zeolite-like framework and three-dimensional silver interactions: [Ag4(O3PCH2CH2PO3)]. Journal of Solid State Chemistry, 2004, 177, 4626-4631.	2.9	21
191	A novel 2D net-like supramolecular polymer constructed from Ln6Cu24node and trans-Cu(Gly)2bridge. Chemical Communications, 2004, , 1186-1187.	4.1	78
192	A theoretical study on the chemical bonding of 3d-transition-metal carbides. Solid State Communications, 2002, 121, 411-416.	1.9	51
193	Theoretical predictions of the structure, gas-phase acidity, and aromaticity of tetrathiosquaric acid. International Journal of Quantum Chemistry, 2000, 78, 443-449.	2.0	15