
David D Moore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4862117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MAPK4 promotes triple negative breast cancer growth and reduces tumor sensitivity to PI3K blockade. Nature Communications, 2022, 13, 245.	12.8	17
2	A phospholipid mimetic targeting LRH-1 ameliorates colitis. Cell Chemical Biology, 2022, 29, 1174-1186.e7.	5.2	8
3	Hepatic PPARα Is Destabilized by SIRT1 Deacetylase in Undernourished Male Mice. Frontiers in Nutrition, 2022, 9, 831879.	3.7	4
4	Oleic acid is an endogenous ligand of TLX/NR2E1 that triggers hippocampal neurogenesis. Proceedings of the United States of America, 2022, 119, e2023784119.	7.1	30
5	Mitophagy deficiency increases NLRP3 to induce brown fat dysfunction in mice. Autophagy, 2021, 17, 1205-1221.	9.1	53
6	The bile acid induced hepatokine orosomucoid suppresses adipocyte differentiation. Biochemical and Biophysical Research Communications, 2021, 534, 864-870.	2.1	6
7	Vertical sleeve gastrectomy confers metabolic improvements by reducing intestinal bile acids and lipid absorption in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
8	MAPK4 promotes prostate cancer by concerted activation of androgen receptor and AKT. Journal of Clinical Investigation, 2021, 131, .	8.2	31
9	CAR directs T cell adaptation to bile acids in the small intestine. Nature, 2021, 593, 147-151.	27.8	36
10	Deletion of Nuclear Receptor Constitutive Androstane Receptor CAR Increases Anxiety and Lowers Androgen Levels. Journal of the Endocrine Society, 2021, 5, A807-A807.	0.2	0
11	Ube2i deletion in adipocytes causes lipoatrophy in mice. Molecular Metabolism, 2021, 48, 101221.	6.5	9
12	A human liver chimeric mouse model for non-alcoholic fatty liver disease. JHEP Reports, 2021, 3, 100281.	4.9	27
13	MAPK6-AKT signaling promotes tumor growth and resistance to mTOR kinase blockade. Science Advances, 2021, 7, eabi6439.	10.3	13
14	Vitamin D Receptor Activation in Liver Macrophages Ameliorates Hepatic Inflammation, Steatosis, and Insulin Resistance in Mice. Hepatology, 2020, 71, 1559-1574.	7.3	103
15	Vitamin D Receptor Activation in Liver Macrophages Protects Against Hepatic Endoplasmic Reticulum Stress in Mice. Hepatology, 2020, 71, 1453-1466.	7.3	38
16	Methyl‣ensing Nuclear Receptor Liver Receptor Homologâ€1 Regulates Mitochondrial Function in Mouse Hepatocytes. Hepatology, 2020, 71, 1055-1069.	7.3	20
17	Metabolic dysregulation in the <i>Atp7b</i> ^{â^'/â^'} Wilson's disease mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2076-2083.	7.1	35
18	Coagulopathy in Malnourished Mice Is Sexually Dimorphic and Regulated by Nutrient‧ensing Nuclear Receptors. Hepatology Communications, 2020, 4, 1835-1850.	4.3	2

#	Article	IF	CITATIONS
19	TFEB regulates murine liver cell fate during development and regeneration. Nature Communications, 2020, 11, 2461.	12.8	32
20	Epigenome environment interactions accelerate epigenomic aging and unlock metabolically restricted epigenetic reprogramming in adulthood. Nature Communications, 2020, 11, 2316.	12.8	43
21	<i>NR1H4</i> â€related Progressive Familial Intrahepatic Cholestasis 5. Journal of Pediatric Gastroenterology and Nutrition, 2020, 70, e111-e113.	1.8	11
22	Comparison of the Bentall procedure versus valve-sparing aortic root replacement. Baylor University Medical Center Proceedings, 2020, 33, 524-528.	0.5	3
23	FXR-dependent Rubicon induction impairs autophagy in models of human cholestasis. Journal of Hepatology, 2020, 72, 1122-1131.	3.7	47
24	Novel role of dynaminâ€relatedâ€protein 1 in dynamics of ERâ€lipid droplets in adipose tissue. FASEB Journal, 2020, 34, 8265-8282.	0.5	20
25	Development of the First Low Nanomolar Liver Receptor Homolog-1 Agonist through Structure-guided Design. Journal of Medicinal Chemistry, 2019, 62, 11022-11034.	6.4	21
26	Constitutive Androstane Receptor Differentially Regulates Bile Acid Homeostasis in Mouse Models of Intrahepatic Cholestasis. Hepatology Communications, 2019, 3, 147-159.	4.3	15
27	Quantitative Real-Time Imaging of Glutathione with Subcellular Resolution. Antioxidants and Redox Signaling, 2019, 30, 1900-1910.	5.4	26
28	MAPK4 overexpression promotes tumor progression via noncanonical activation of AKT/mTOR signaling. Journal of Clinical Investigation, 2019, 129, 1015-1029.	8.2	63
29	Rapid Disruption of Genes Specifically in Livers of Mice Using Multiplex CRISPR/Cas9 Editing. Gastroenterology, 2018, 155, 1967-1970.e6.	1.3	16
30	LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival. Nature Communications, 2018, 9, 4055.	12.8	58
31	Xenobiotic Nuclear Receptor Signaling Determines Molecular Pathogenesis of Progressive Familial Intrahepatic Cholestasis. Endocrinology, 2018, 159, 2435-2446.	2.8	10
32	miR-30a Remodels Subcutaneous Adipose Tissue Inflammation to Improve Insulin Sensitivity in Obesity. Diabetes, 2018, 67, 2541-2553.	0.6	60
33	Integrated Genomic Comparison of Mouse Models Reveals Their Clinical Resemblance to Human Liver Cancer. Molecular Cancer Research, 2018, 16, 1713-1723.	3.4	14
34	<scp>TGR</scp> 5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressureâ€induced stress in mice. Cardiovascular Therapeutics, 2018, 36, e12462.	2.5	46
35	A Versatile Tumor Gene Deletion System Reveals a Crucial Role for FGFR1 in Breast Cancer Metastasis. Neoplasia, 2017, 19, 421-428.	5.3	10
36	Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice. Hepatology, 2017, 66, 498-509.	7.3	81

#	Article	IF	CITATIONS
37	Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α. Digestive Diseases, 2017, 35, 203-209.	1.9	17
38	Asprosin is a centrally acting orexigenic hormone. Nature Medicine, 2017, 23, 1444-1453.	30.7	216
39	Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart. Hepatology, 2017, 65, 189-201.	7.3	88
40	Nutrient-sensing nuclear receptors PPARI \pm and FXR control liver energy balance. Journal of Clinical Investigation, 2017, 127, 1193-1201.	8.2	141
41	Compensatory changes in CYP expression in three different toxicology mouse models: CAR-null, Cyp3a-null, and Cyp2b9/10/13-null mice. PLoS ONE, 2017, 12, e0174355.	2.5	29
42	Glucocorticoids Have Opposing Effects on Liver Fibrosis in Hepatic Stellate and Immune Cells. Molecular Endocrinology, 2016, 30, 905-916.	3.7	26
43	Vertical sleeve gastrectomy activates GPBARâ€1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice. Hepatology, 2016, 64, 760-773.	7.3	143
44	Hypothalamic Vitamin D Improves Glucose Homeostasis and Reduces Weight. Diabetes, 2016, 65, 2732-2741.	0.6	45
45	Liver receptor homologâ€1 is a critical determinant of methylâ€pool metabolism. Hepatology, 2016, 63, 95-106.	7.3	24
46	Asprosin, a Fasting-Induced Glucogenic Protein Hormone. Cell, 2016, 165, 566-579.	28.9	324
47	Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nature Communications, 2016, 7, 10713.	12.8	227
48	Circadian Homeostasis of Liver Metabolism Suppresses Hepatocarcinogenesis. Cancer Cell, 2016, 30, 909-924.	16.8	360
49	Small Heterodimer Partner (NROB2) Coordinates Nutrient Signaling and the Circadian Clock in Mice. Molecular Endocrinology, 2016, 30, 988-995.	3.7	10
50	Using Google Reverse Image Search to Decipher Biological Images. Current Protocols in Molecular Biology, 2015, 111, 19.13.1-19.13.4.	2.9	8
51	The orphan nuclear receptor small heterodimer partner is required for thiazolidinedione effects in leptin-deficient mice. Journal of Biomedical Science, 2015, 22, 30.	7.0	8
52	Thyroid Hormone Regulates the mRNA Expression of Small Heterodimer Partner through Liver Receptor Homolog-1. Endocrinology and Metabolism, 2015, 30, 584.	3.0	3
53	Lysosomal signaling molecules regulate longevity in <i>Caenorhabditis elegans</i> . Science, 2015, 347, 83-86.	12.6	211
54	Activating CAR and β-catenin induces uncontrolled liver growth and tumorigenesis. Nature Communications, 2015, 6, 5944.	12.8	79

#	Article	IF	CITATIONS
55	Circadian Dysfunction Induces Leptin Resistance in Mice. Cell Metabolism, 2015, 22, 448-459.	16.2	198
56	Orphan Nuclear Receptor ERRα Controls Macrophage Metabolic Signaling and A20 Expression to Negatively Regulate TLR-Induced Inflammation. Immunity, 2015, 43, 80-91.	14.3	106
57	MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. Journal of Clinical Investigation, 2015, 125, 2497-2509.	8.2	195
58	Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes. Molecular Endocrinology, 2015, 29, 1320-1333.	3.7	10
59	Elevated copper impairs hepatic nuclear receptor function in Wilson's disease. Journal of Clinical Investigation, 2015, 125, 3449-3460.	8.2	63
60	Role of Constitutive Androstane Receptor in Toll-Like Receptor-Mediated Regulation of Gene Expression of Hepatic Drug-Metabolizing Enzymes and Transporters. Drug Metabolism and Disposition, 2014, 42, 172-181.	3.3	31
61	FXR-induced secretion of FGF15/19 inhibits CYP27 expression in cholangiocytes through p38 kinase pathway. Pflugers Archiv European Journal of Physiology, 2014, 466, 1011-1019.	2.8	30
62	Vitamin D Receptor Activation Down-regulates the Small Heterodimer Partner and Increases CYP7A1 to Lower Cholesterol. Gastroenterology, 2014, 146, 1048-1059.e7.	1.3	69
63	Cysteine sulfinic acid decarboxylase regulation: A role for farnesoid <scp>X</scp> receptor and small heterodimer partner in murine hepatic taurine metabolism. Hepatology Research, 2014, 44, E218-28.	3.4	41
64	Nutrient-sensing nuclear receptors coordinate autophagy. Nature, 2014, 516, 112-115.	27.8	412
65	All-trans-retinoic acid ameliorates hepatic steatosis in mice by a novel transcriptional cascade. Hepatology, 2014, 59, 1750-1760.	7.3	71
66	Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution. ELife, 2014, 3, e01694.	6.0	61
67	Abstract A32: Studying circadian disruption as a novel risk factor of hepatocellular carcinoma using mouse models. , 2014, , .		0
68	Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer. Hepatology, 2013, 57, 1098-1106.	7.3	61
69	A metabolic minuet. Nature, 2013, 502, 454-455.	27.8	2
70	Bile Acids Activate YAP to Promote Liver Carcinogenesis. Cell Reports, 2013, 5, 1060-1069.	6.4	159
71	WNT Signaling Pathway Gene Polymorphisms and Risk of Hepatic Fibrosis and Inflammation in HCV-Infected Patients. PLoS ONE, 2013, 8, e84407.	2.5	16
72	Limited Effects of Bile Acids and Small Heterodimer Partner on Hepatitis B Virus Biosynthesis <i>In Vivo</i> . Journal of Virology, 2012, 86, 2760-2768.	3.4	21

#	Article	IF	CITATIONS
73	Nuclear Receptors Reverse McGarry's Vicious Cycle to Insulin Resistance. Cell Metabolism, 2012, 15, 615-622.	16.2	33
74	Neonatal activation of the nuclear receptor CAR results in epigenetic memory and permanent change of drug metabolism in mouse liver. Hepatology, 2012, 56, 1499-1508.	7.3	52
75	Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice. Toxicology and Applied Pharmacology, 2012, 263, 131-137.	2.8	23
76	A Conversation with Elwood Jensen. Annual Review of Physiology, 2012, 74, 1-11.	13.1	15
77	Research Resource: The Estrogen Receptor α Cistrome Defined by DamIP. Molecular Endocrinology, 2012, 26, 349-357.	3.7	5
78	Bile Acid Receptor Agonist GW4064 Regulates PPARÎ ³ Coactivator-1α Expression Through Estrogen Receptor-Related Receptor α. Molecular Endocrinology, 2011, 25, 922-932.	3.7	30
79	A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature, 2011, 474, 506-510.	27.8	213
80	Cellular Energy Depletion Resets Whole-Body Energy by Promoting Coactivator-Mediated Dietary Fuel Absorption. Cell Metabolism, 2011, 13, 35-43.	16.2	78
81	Commentary: The Year in Orphan Nuclear Receptors and Their Coregulators. Molecular Endocrinology, 2011, 25, 1983-1988.	3.7	1
82	Endoplasmic reticulum stress and glucose homeostasis. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 367-373.	2.5	26
83	DamlP: Using Mutant DNA Adenine Methyltransferase to Study DNAâ€Protein Interactions In Vivo. Current Protocols in Molecular Biology, 2011, 94, Unit21.21.	2.9	9
84	Ortho-aminoazotoluene activates mouse constitutive androstane receptor (mCAR) and increases expression of mCAR target genes. Toxicology and Applied Pharmacology, 2011, 255, 76-85.	2.8	6
85	Dissociation of diabetes and obesity in mice lacking orphan nuclear receptor small heterodimer partner. Journal of Lipid Research, 2011, 52, 2234-2244.	4.2	44
86	Crise de Foie, Redux?. Science, 2011, 331, 1275-1276.	12.6	1
87	Constitutive Androstane Receptor Activation Decreases Plasma Apolipoprotein B–Containing Lipoproteins and Atherosclerosis in Low-Density Lipoprotein Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2232-2239.	2.4	31
88	The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors. Nature Immunology, 2011, 12, 742-751.	14.5	167
89	Combined deletion of Fxr and Shp in mice induces Cyp17a1 and results in juvenile onset cholestasis. Journal of Clinical Investigation, 2011, 121, 86-95.	8.2	100
90	Rosiglitazone attenuates age- and diet-associated nonalcoholic steatohepatitis in male low-density lipoprotein receptor knockout mice. Hepatology, 2010, 52, 2001-2011.	7.3	89

#	Article	IF	CITATIONS
91	Disrupting Circadian Homeostasis of Sympathetic Signaling Promotes Tumor Development in Mice. PLoS ONE, 2010, 5, e10995.	2.5	222
92	DamIP: A novel method to identify DNA binding sites in vivo. Nuclear Receptor Signaling, 2010, 8, nrs.08003.	1.0	14
93	Nuclear Receptors. , 2010, , 106-117.		0
94	Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18831-18836.	7.1	216
95	Minireview: Evolution of NURSA, the Nuclear Receptor Signaling Atlas. Molecular Endocrinology, 2009, 23, 740-746.	3.7	109
96	Significance and Mechanism of CYP7a1 Gene Regulation during the Acute Phase of Liver Regeneration. Molecular Endocrinology, 2009, 23, 137-145.	3.7	69
97	Chemical Approaches to Nuclear Receptors in MetabolismA report on the workshop "Chemical Approaches to Nuclear Receptors and Metabolism,―sponsored by National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA, 16 to 17 April 2009 Science Signaling, 2009, 2, mr5.	3.6	2
98	Human CYP3A4 and Murine Cyp3A11 Are Regulated by Equol and Genistein via the Pregnane X Receptor in a Species-Specific Manner. Journal of Nutrition, 2009, 139, 898-904.	2.9	67
99	Constitutive androstane receptor mediates the induction of drug metabolism in mouse models of type 1 diabetes. Hepatology, 2009, 50, 622-629.	7.3	39
100	Dietary procyanidins enhance transcriptional activity of bile acidâ€activated FXR <i>in vitro</i> and reduce triglyceridemia <i> in vivo</i> in a FXRâ€dependent manner. Molecular Nutrition and Food Research, 2009, 53, 805-814.	3.3	85
101	Forkhead box transcription factor O1 inhibits cholesterol 7α-hydroxylase in human hepatocytes and in high fat diet-fed mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 991-996.	2.4	17
102	Circadian Dysregulation Disrupts Bile Acid Homeostasis. PLoS ONE, 2009, 4, e6843.	2.5	110
103	Dietary procyanidins lower triglyceride levels signaling through the nuclear receptor small heterodimer partner. Molecular Nutrition and Food Research, 2008, 52, 1172-1181.	3.3	69
104	Loss of orphan receptor small heterodimer partner sensitizes mice to liver injury from obstructive cholestasis. Hepatology, 2008, 47, 1578-1586.	7.3	62
105	Orphan receptor small heterodimer partner suppresses tumorigenesis by modulating cyclin D1 expression and cellular proliferation. Hepatology, 2008, 48, 289-298.	7.3	107
106	C-Myc and its target FoxM1 are critical downstream effectors of constitutive androstane receptor (CAR) mediated direct liver hyperplasia. Hepatology, 2008, 48, 1302-1311.	7.3	121
107	FXR: a metabolic regulator and cell protector. Cell Research, 2008, 18, 1087-1095.	12.0	318
108	Effects of naturally occurring coumarins on hepatic drug-metabolizing enzymes inmice. Toxicology and Applied Pharmacology, 2008, 232, 337-350.	2.8	49

#	Article	IF	CITATIONS
109	Regulatory Cross-Talk between Drug Metabolism and Lipid Homeostasis: Constitutive Androstane Receptor and Pregnane X Receptor Increase Insig-1 Expression. Molecular Pharmacology, 2008, 73, 1282-1289.	2.3	129
110	Absence of the SRC-2 Coactivator Results in a Glycogenopathy Resembling Von Gierke's Disease. Science, 2008, 322, 1395-1399.	12.6	153
111	Activation of the constitutive androstane receptor decreases HDL in wild-type and human apoA-I transgenic mice. Journal of Lipid Research, 2008, 49, 1682-1691.	4.2	37
112	The Nrf2 Activator Oltipraz Also Activates the Constitutive Androstane Receptor. Drug Metabolism and Disposition, 2008, 36, 1716-1721.	3.3	45
113	Liver receptor homolog-1, an emerging metabolic modulator. Frontiers in Bioscience - Landmark, 2008, Volume, 5950.	3.0	80
114	The Environmental Estrogen, Nonylphenol, Activates the Constitutive Androstane Receptor. Toxicological Sciences, 2007, 98, 416-426.	3.1	39
115	The Cholesterol-Raising Factor from Coffee Beans, Cafestol, as an Agonist Ligand for the Farnesoid and Pregnane X Receptors. Molecular Endocrinology, 2007, 21, 1603-1616.	3.7	107
116	Purification and Concentration of DNA from Aqueous Solutions. Current Protocols in Pharmacology, 2007, 38, 3C.	4.0	3
117	Spontaneous Development of Liver Tumors in the Absence of the Bile Acid Receptor Farnesoid X Receptor. Cancer Research, 2007, 67, 863-867.	0.9	397
118	PHYSIOLOGY: Sister Act. Science, 2007, 316, 1436-1438.	12.6	45
119	Gender Dictates the Nuclear Receptor-Mediated Regulation of CYP3A44. Drug Metabolism and Disposition, 2007, 35, 36-42.	3.3	26
120	Adamantyl-Substituted Retinoid-Related Molecules Bind Small Heterodimer Partner and Modulate the Sin3A Repressor. Cancer Research, 2007, 67, 318-325.	0.9	72
121	Stigmasterol, a Soy Lipid–Derived Phytosterol, Is an Antagonist of the Bile Acid Nuclear Receptor FXR. Pediatric Research, 2007, 62, 301-306.	2.3	252
122	Molecular characterization of the role of orphan receptor small heterodimer partner in development of fatty liver. Hepatology, 2007, 46, 147-157.	7.3	140
123	Alterations in xenobiotic metabolism in the longâ€lived Little mice. Aging Cell, 2007, 6, 453-470.	6.7	119
124	Constitutive androstane receptor (CAR) ligand, TCPOBOP, attenuates Fas-induced murine liver injury by altering Bcl-2 proteins. Hepatology, 2006, 44, 252-262.	7.3	54
125	Orphan Receptor Small Heterodimer Partner Is an Important Mediator of Glucose Homeostasis. Molecular Endocrinology, 2006, 20, 2671-2681.	3.7	39
126	Phosphorylation of the Hinge Domain of the Nuclear Hormone Receptor LRH-1 Stimulates Transactivation. Journal of Biological Chemistry, 2006, 281, 7850-7855.	3.4	74

#	Article	IF	CITATIONS
127	Nuclear Receptor-Dependent Bile Acid Signaling Is Required for Normal Liver Regeneration. Science, 2006, 312, 233-236.	12.6	588
128	International Union of Pharmacology. LXII. The NR1H and NR1I Receptors: Constitutive Androstane Receptor, Pregnene X Receptor, Farnesoid X Receptor α, Farnesoid X Receptor β, Liver X Receptor α, Liver X Receptor β, and Vitamin D Receptor. Pharmacological Reviews, 2006, 58, 742-759.	16.0	189
129	Regulation of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase Promoter by Nuclear Receptors Liver Receptor Homologue-1 and Small Heterodimer Partner. Journal of Biological Chemistry, 2006, 281, 807-812.	3.4	39
130	Farnesoid X receptor is essential for normal glucose homeostasis. Journal of Clinical Investigation, 2006, 116, 1102-1109.	8.2	716
131	Modulation of human nuclear receptor LRH-1 activity by phospholipids and SHP. Nature Structural and Molecular Biology, 2005, 12, 357-363.	8.2	189
132	Gadd45β is induced through a CAR-dependent, TNF-independent pathway in murine liver hyperplasia. Hepatology, 2005, 42, 1118-1126.	7.3	90
133	Molecular mechanisms of action of the soy isoflavones includes activation of promiscuous nuclear receptors. A review. Journal of Nutritional Biochemistry, 2005, 16, 321-330.	4.2	137
134	CAR, The Continuously Advancing Receptor, in Drug Metabolism and Disease. Current Drug Metabolism, 2005, 6, 329-339.	1.2	159
135	Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2063-2068.	7.1	208
136	'No, really, how do they work?'. Genes and Development, 2005, 19, 413-414.	5.9	3
137	Role of the Constitutive Androstane Receptor in Xenobiotic-Induced Thyroid Hormone Metabolism. Endocrinology, 2005, 146, 995-1002.	2.8	153
138	Xenobiotic Stress Induces Hepatomegaly and Liver Tumors via the Nuclear Receptor Constitutive Androstane Receptor. Molecular Endocrinology, 2005, 19, 1646-1653.	3.7	260
139	CAR: Three new models for a problem child. Cell Metabolism, 2005, 1, 6-8.	16.2	14
140	The orphan nuclear receptor SHP regulates PGC- $1\hat{l}\pm$ expression and energy production in brown adipocytes. Cell Metabolism, 2005, 2, 227-238.	16.2	143
141	Meclizine Is an Agonist Ligand for Mouse Constitutive Androstane Receptor (CAR) and an Inverse Agonist for Human CAR. Molecular Endocrinology, 2004, 18, 2402-2408.	3.7	105
142	Interactions between Hepatic Mrp4 and Sult2a as Revealed by the Constitutive Androstane Receptor and Mrp4 Knockout Mice. Journal of Biological Chemistry, 2004, 279, 22250-22257.	3.4	211
143	The Constitutive Androstane Receptor and Pregnane X Receptor Function Coordinately to Prevent Bile Acid-induced Hepatotoxicity. Journal of Biological Chemistry, 2004, 279, 49517-49522.	3.4	211
144	A Novel Constitutive Androstane Receptor-Mediated and CYP3A-Independent Pathway of Bile Acid Detoxification. Molecular Pharmacology, 2004, 65, 292-300.	2.3	237

#	Article	IF	CITATIONS
145	Alterations in the distribution and orexigenic effects of dexamethasone in CAR-null mice. Pharmacology Biochemistry and Behavior, 2004, 78, 285-291.	2.9	13
146	Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. Journal of Clinical Investigation, 2004, 113, 1408-1418.	8.2	1,069
147	A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. Journal of Clinical Investigation, 2004, 113, 137-143.	8.2	96
148	A traditional herbal medicine enhances bilirubin clearance by activating the nuclear receptor CAR. Journal of Clinical Investigation, 2004, 113, 137-143.	8.2	200
149	G <scp>UGULIPID</scp> : A Natural Cholesterol-Lowering Agent. Annual Review of Nutrition, 2003, 23, 303-313.	10.1	215
150	INDUCTION OF MULTIDRUG RESISTANCE PROTEIN 3 (MRP3) IN VIVO IS INDEPENDENT OF CONSTITUTIVE ANDROSTANE RECEPTOR. Drug Metabolism and Disposition, 2003, 31, 1315-1319.	3.3	64
151	Resistance of SHP-null Mice to Bile Acid-induced Liver Damage. Journal of Biological Chemistry, 2003, 278, 44475-44481.	3.4	96
152	Induction of bilirubin clearance by the constitutive androstane receptor (CAR). Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4156-4161.	7.1	372
153	The Orphan Receptor SHP and the Three-Hybrid Interference Assay. Methods in Enzymology, 2003, 364, 152-159.	1.0	0
154	Complex effects of rexinoids on ligand dependent activation or inhibition of the xenobiotic receptor, CAR. Nuclear Receptor, 2003, 1, 2.	10.0	22
155	Isotopic Assays for Reporter Gene Activity. Current Protocols in Molecular Biology, 2003, 63, Unit9.7A.	2.9	5
156	Dual Mechanisms for Repression of the Monomeric Orphan Receptor Liver Receptor Homologous Protein-1 by the Orphan Small Heterodimer Partner. Journal of Biological Chemistry, 2002, 277, 2463-2467.	3.4	140
157	Modulation of Acetaminophen-Induced Hepatotoxicity by the Xenobiotic Receptor CAR. Science, 2002, 298, 422-424.	12.6	297
158	FOR, a Novel Orphan Nuclear Receptor Related to Farnesoid X Receptor. Journal of Biological Chemistry, 2002, 277, 17836-17844.	3.4	37
159	CREB-binding Protein/p300 Co-activation of Crystallin Gene Expression. Journal of Biological Chemistry, 2002, 277, 24081-24089.	3.4	79
160	Small Heterodimer Partner, an Orphan Nuclear Receptor, Augments Peroxisome Proliferator-activated Receptor Î ³ Transactivation. Journal of Biological Chemistry, 2002, 277, 1586-1592.	3.4	103
161	Differential Regulation of the Orphan Nuclear ReceptorSmall Heterodimer Partner (SHP) Gene Promoter by Orphan Nuclear Receptor ERR Isoforms. Journal of Biological Chemistry, 2002, 277, 1739-1748.	3.4	142
162	Bile acids regulate the ontogenic expression of ileal bile acid binding protein in the rat via the farnesoid X receptor. Gastroenterology, 2002, 122, 1483-1492.	1.3	57

#	Article	IF	CITATIONS
163	A Natural Product That Lowers Cholesterol As an Antagonist Ligand for FXR. Science, 2002, 296, 1703-1706.	12.6	491
164	Isolation and Purification of Large DNA Restriction Fragments from Agarose Gels. Current Protocols in Molecular Biology, 2002, 59, Unit 2.6.	2.9	20
165	Purification and Concentration of DNA from Aqueous Solutions. Current Protocols in Molecular Biology, 2002, 59, Unit 2.1A.	2.9	87
166	Redundant Pathways for Negative Feedback Regulation of Bile Acid Production. Developmental Cell, 2002, 2, 721-731.	7.0	432
167	Specific and overlapping functions of the nuclear hormone receptors CAR and PXR in xenobiotic response. Pharmacogenomics Journal, 2002, 2, 117-126.	2.0	221
168	Does loss of bile acid homeostasis make mice melancholy?. Journal of Clinical Investigation, 2002, 110, 1067-1069.	8.2	5
169	Does loss of bile acid homeostasis make mice melancholy?. Journal of Clinical Investigation, 2002, 110, 1067-1069.	8.2	3
170	Commonly Used Reagents and Equipment. Current Protocols in Molecular Biology, 2001, Appendix 2, Appendix 2.	2.9	19
171	New insights into receptor ligand binding domains from a novel assembly assay. Journal of Steroid Biochemistry and Molecular Biology, 2001, 76, 3-7.	2.5	7
172	Role reversal: new insights from new ligands for the xenobiotic receptor CAR. Trends in Endocrinology and Metabolism, 2001, 12, 7-10.	7.1	66
173	Purification and Concentration of DNA from Aqueous Solutions. , 2001, 00, A.3C.1.		1
174	Purification and Concentration of DNA from Aqueous Solutions. Current Protocols in Neuroscience, 2001, Appendix 1, Appendix 1G.	2.6	1
175	Mutations in the small heterodimer partner gene are associated with mild obesity in Japanese subjects. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 575-580.	7.1	68
176	The nuclear receptor CAR mediates specific xenobiotic induction of drug metabolism. Nature, 2000, 407, 920-923.	27.8	635
177	The Xenobiotic Compound 1,4-Bis[2-(3,5-Dichloropyridyloxy)]Benzene Is an Agonist Ligand for the Nuclear Receptor CAR. Molecular and Cellular Biology, 2000, 20, 2951-2958.	2.3	407
178	The Farnesoid X-activated Receptor Mediates Bile Acid Activation of Phospholipid Transfer Protein Gene Expression. Journal of Biological Chemistry, 2000, 275, 39313-39317.	3.4	209
179	The Orphan Nuclear Receptor SHP Inhibits Hepatocyte Nuclear Factor 4 and Retinoid X Receptor Transactivation: Two Mechanisms for Repression. Molecular and Cellular Biology, 2000, 20, 187-195.	2.3	295
180	Identification of the DNA Binding Specificity and Potential Target Genes for the Farnesoid X-activated Receptor. Journal of Biological Chemistry, 2000, 275, 10638-10647.	3.4	245

#	Article	IF	CITATIONS
181	Dynamic Stabilization of Nuclear Receptor Ligand Binding Domains by Hormone or Corepressor Binding. Molecular Cell, 2000, 6, 245-253.	9.7	97
182	Activation of the Promoter of the Orphan Receptor SHP by Orphan Receptors That Bind DNA as Monomers. Journal of Biological Chemistry, 1999, 274, 20869-20873.	3.4	95
183	Bile Acids: Natural Ligands for an Orphan Nuclear Receptor. Science, 1999, 284, 1365-1368.	12.6	2,021
184	Linkage of the Nuclear Hormone Receptor Genes NR1D2, THRB, and RARB: Evidence for an Ancient, Large-Scale Duplication. Genomics, 1999, 57, 289-292.	2.9	12
185	Activating Signal Cointegrator 1, a Novel Transcription Coactivator of Nuclear Receptors, and Its Cytosolic Localization under Conditions of Serum Deprivation. Molecular and Cellular Biology, 1999, 19, 6323-6332.	2.3	61
186	Isotopic Assays for Reporter Gene Activity. Current Protocols in Pharmacology, 1999, 5, Unit 6.4.	4.0	0
187	Androstane metabolites bind to and deactivate the nuclear receptor CAR-β. Nature, 1998, 395, 612-615.	27.8	462
188	Purification and Concentration of DNA from Aqueous Solutions. , 1998, Appendix 4, A.4E.1-A.4E.2.		0
189	Inhibition of Estrogen Receptor Action by the Orphan Receptor SHP (Short Heterodimer Partner). Molecular Endocrinology, 1998, 12, 1551-1557.	3.7	137
190	IκBβ Interacts with the Retinoid X Receptor and Inhibits Retinoid-dependent Transactivation in Lipopolysaccharide-treated Cells. Journal of Biological Chemistry, 1998, 273, 3212-3215.	3.4	25
191	Structure and Expression of the Orphan Nuclear ReceptorSHP Gene. Journal of Biological Chemistry, 1998, 273, 14398-14402.	3.4	98
192	Inhibition of Estrogen Receptor Action by the Orphan Receptor SHP (Short Heterodimer Partner). Molecular Endocrinology, 1998, 12, 1551-1557.	3.7	55
193	The Thyroid Hormone Receptor Resource. Thyroid, 1997, 7, 1-2.	4.5	9
194	Differential Transactivation by Two Isoforms of the Orphan Nuclear Hormone Receptor CAR. Journal of Biological Chemistry, 1997, 272, 23565-23571.	3.4	245
195	Novel Receptor Interaction and Repression Domains in the Orphan Receptor SHP. Molecular and Cellular Biology, 1997, 17, 7126-7131.	2.3	124
196	A component of the 26S proteasome binds an orphan member of the nuclear hormone receptor superfamily. Journal of Steroid Biochemistry and Molecular Biology, 1996, 56, 23-30.	2.5	23
197	An Orphan Nuclear Hormone Receptor That Lacks a DNA Binding Domain and Heterodimerizes with Other Receptors. Science, 1996, 272, 1336-1339.	12.6	499
198	Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Molecular Endocrinology, 1996, 10, 1646-1655.	3.7	87

#	Article	IF	CITATIONS
199	Cyclopamine, a steroidal alkaloid, disrupts development of cranial neural crest cells in Xenopus. Developmental Dynamics, 1995, 202, 255-270.	1.8	27
200	Interaction of thyroid-hormone receptor with a conserved transcriptional mediator. Nature, 1995, 374, 91-94.	27.8	437
201	Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Molecular Endocrinology, 1995, 9, 72-85.	3.7	200
202	Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Molecular Endocrinology, 1995, 9, 243-254.	3.7	218
203	Gene Synthesis: Assembly of Target Sequences Using Mutually Priming Long Oligonucleotides. Current Protocols in Molecular Biology, 1994, 26, Unit8.2B.	2.9	1
204	A new orphan member of the nuclear hormone receptor superfamily closely related to Rev-Erb. Molecular Endocrinology, 1994, 8, 996-1005.	3.7	52
205	Purification and Concentration of DNA from Aqueous Solutions. Current Protocols in Molecular Biology, 1994, 25, 2.1.1-2.1.9.	2.9	1
206	Expression of the rat growth-hormone gene is under the influence of a cell-type-specific silencer element. FEBS Journal, 1993, 213, 399-404.	0.2	13
207	Purification and Concentration of DNA from Aqueous Solutions. Current Protocols in Immunology, 1993, 8, Unit 10.1.	3.6	9
208	Isolation and Purification of Large DNA Restriction Fragments from Agarose Gels. Current Protocols in Immunology, 1993, 8, Unit 10.5.	3.6	2
209	lkaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science, 1992, 258, 808-812.	12.6	437
210	Binding of a nuclear protein to the rat growth hormone silencer element. Nucleic Acids Research, 1992, 20, 401-408.	14.5	39
211	Functional isoforms of Pit-1 generated by alternative messenger RNA splicing. Molecular Endocrinology, 1992, 6, 241-247.	3.7	54
212	Thyroid Hormone Regulation of Gene Expression. Annual Review of Physiology, 1991, 53, 17-35.	13.1	210
213	Effects of Varying the Position of Thyroid Hormone Response Elements within the Rat Growth Hormone Promoter: Implications for Positive and Negative Regulation by 3,5,3′-Triiodothyronine. Molecular Endocrinology, 1991, 5, 542-548.	3.7	64
214	Direct repeats. Nature, 1990, 345, 584-584.	27.8	0
215	Identification of a tHyroid Hormone Receptor That Is Pituitary-Specific. Science, 1989, 244, 76-79.	12.6	494
216	Mutations of the Rat Growth Hormone Promoter which Increase and Decrease Response to Thyroid Hormone Define a Consensus Thyroid Hormone Response Element. Molecular Endocrinology, 1989, 3, 1996-2004.	3.7	239

#	Article	IF	CITATIONS
217	Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing. Nature, 1989, 337, 659-661.	27.8	440
218	Promiscuous behaviour in the steroid hormone receptor superfamily. Trends in Neurosciences, 1989, 12, 165-168.	8.6	13
219	Gene Synthesis: Assembly of Target Sequences Using Mutually Priming Long Oligonucleotides. Current Protocols in Molecular Biology, 1989, 6, 8.2.8-8.2.13.	2.9	0
220	The glucocorticoid receptor recognizes a specific nucleotide sequence in hepatitis B virus DNA causing increased activity of the HBV enhancer. Virology, 1988, 167, 630-633.	2.4	144
221	c DNA Libraries. Current Protocols in Molecular Biology, 1988, 1, Unit5.2.	2.9	7
222	Secretion of Escherichia coli chloramphenicol acetyltransferase by mammalian cells. Gene, 1988, 67, 279-286.	2.2	18
223	Multihormonal Regulation of the Human, Rat, and Bovine Growth Hormone Promoters: Differential Effects of 3′,5′-Cyclic Adenosine Monophosphate, Thyroid Hormone, and Glucocorticoids. Molecular Endocrinology, 1988, 2, 792-798.	3.7	94
224	DNAse I Footprint Analysis of Nuclear Proteins from Pituitary and Nonpituitary Cells that Specifically Bind to the Rat Growth Hormone Promoter and 5′-Regulatory Region. Molecular Endocrinology, 1988, 2, 1101-1107.	3.7	23
225	Genomic DNA Libraries. Current Protocols in Molecular Biology, 1987, 00, Unit5.1.	2.9	0
226	The Human Growth-Hormone Gene Family. , 1987, , 121-135.		0
227	Conservation of the DNA binding domain and other properties between porcine and rat glucocorticoid receptors. The Journal of Steroid Biochemistry, 1986, 24, 1097-1103.	1.1	7
228	CAT vectors for analysis of eukaryotic promoters and enhancers. Gene, 1986, 45, 107-111.	2.2	189
229	Repression mediates cell-type-specific expression of the rat growth hormone gene Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8283-8287.	7.1	109
230	Human Growth Hormone as a Reporter Gene in Regulation Studies Employing Transient Gene Expression. Molecular and Cellular Biology, 1986, 6, 3173-3179.	2.3	310
231	Human growth hormone: A multigene family. Cell, 1982, 29, 285-286.	28.9	48
232	Sequence of λric5b. Journal of Molecular Biology, 1982, 154, 81-83.	4.2	3
233	Structure, Expression, and Evolution of Growth Hormone Genes. , 1982, 38, 197-225.		27
234	Sequence organization of the origins of DNA replication in lambdoid coliphages. Gene, 1981, 14, 91-101.	2.2	32

#	Article	IF	CITATIONS
235	Human growth hormone DNA sequence and mRNA structure: possible alternative splicing. Nucleic Acids Research, 1981, 9, 3719-3730.	14.5	480
236	Physical structure of the replication origin of bacteriophage lambda. Science, 1977, 198, 1051-1056.	12.6	122
237	Charon phages: safer derivatives of bacteriophage lambda for DNA cloning. Science, 1977, 196, 161-169.	12.6	1,036