
## Abdurrahman Aktumsek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4861782/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                         | IF                    | CITATIONS           |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------|
| 1  | Cytotoxic and Enzyme Inhibitory Potential of Two Potentilla species (P. speciosa L. and P. reptans) Tj ETQq1                                                                                                                                                                                    | 1 0.784314 rg         | BT_/Qverlock<br>265 |
| 2  | In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochemistry Letters, 2017, 20, 365-372.                                                                                                                                  | 1.2                   | 261                 |
| 3  | Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food and Chemical Toxicology, 2013, 55, 290-296.                                                                                                             | 3.6                   | 175                 |
| 4  | A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss.<br>endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases<br>and type II diabetes. Industrial Crops and Products, 2014, 53, 244-251.                | 5.2                   | 147                 |
| 5  | Investigation Of Antioxidant Potentials Of Solvent Extracts From Different Anatomical Parts Of<br><i>Asphodeline Anatolica</i> E. Tuzlaci: An Endemic Plant To Turkey. Tropical Journal of<br>Obstetrics and Gynaecology, 2014, 11, 481.                                                        | 0.3                   | 142                 |
| 6  | Anti-diabetic and anti-hyperlipidemic properties of Capparis spinosa L.: In vivo and in vitro evaluation of its nutraceutical potential. Journal of Functional Foods, 2017, 35, 32-42.                                                                                                          | 3.4                   | 113                 |
| 7  | Survey of Phytochemical Composition and Biological Effects of Three Extracts from a Wild Plant<br>(Cotoneaster nummularia Fisch. et Mey.): A Potential Source for Functional Food Ingredients and<br>Drug Formulations. PLoS ONE, 2014, 9, e113527.                                             | 2.5                   | 90                  |
| 8  | Chemical composition and biological activities of extracts from three Salvia species: S.<br>blepharochlaena, S. euphratica var. leiocalycina, and S. verticillata subsp. amasiaca. Industrial Crops<br>and Products, 2018, 111, 11-21.                                                          | 5.2                   | 89                  |
| 9  | Euphorbia denticulata Lam.: A promising source of phyto-pharmaceuticals for the development of novel functional formulations. Biomedicine and Pharmacotherapy, 2017, 87, 27-36.                                                                                                                 | 5.6                   | 76                  |
| 10 | Multicomponent pattern and biological activities of seven <i>Asphodeline</i> taxa: potential sources<br>of natural-functional ingredients for bioactive formulations. Journal of Enzyme Inhibition and<br>Medicinal Chemistry, 2017, 32, 60-67.                                                 | 5.2                   | 64                  |
| 11 | Phenolic compounds and biological effects of edible Rumex scutatus and Pseudosempervivum sempervivum: potential sources of natural agents with health benefits. Food and Function, 2016, 7, 3252-3262.                                                                                          | 4.6                   | 63                  |
| 12 | Chemical and biological insights on Cotoneaster integerrimus: A new (-)- epicatechin source for food and medicinal applications. Phytomedicine, 2016, 23, 979-988.                                                                                                                              | 5.3                   | 63                  |
| 13 | Evidence for the involvement of TNF-α and IL-1β in the antinociceptive and anti-inflammatory activity of<br>Stachys lavandulifolia Vahl. (Lamiaceae) essential oil and (-)-α-bisabolol, its main compound, in mice.<br>Journal of Ethnopharmacology, 2016, 191, 9-18.                           | 4.1                   | 60                  |
| 14 | Assessment of the antioxidant potential and fatty acid composition of four Centaurea L. taxa from<br>Turkey. Food Chemistry, 2013, 141, 91-97.                                                                                                                                                  | 8.2                   | 59                  |
| 15 | Shedding light on the biological and chemical fingerprints of three Achillea species (A. biebersteinii,) Tj ETQq                                                                                                                                                                                | 1 1 0.784314 ı<br>4.6 | gBT /Overloo        |
| 16 | Screening for in vitro antioxidant properties and fatty acid profiles of five Centaurea L. species from<br>Turkey flora. Food and Chemical Toxicology, 2011, 49, 2914-2920.                                                                                                                     | 3.6                   | 51                  |
| 17 | Anthraquinone profile, antioxidant and enzyme inhibitory effect of root extracts of<br>eight <i>Asphodeline</i> taxa from Turkey: can <i>Asphodeline</i> roots be considered as a new source<br>of natural compounds?. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 754-759. | 5.2                   | 48                  |
| 18 | Comparative study of biological activities and multicomponent pattern of two wild Turkish species:<br><i>Asphodeline anatolica</i> and <i>Potentilla speciosa</i> . Journal of Enzyme Inhibition and<br>Medicinal Chemistry, 2016, 31, 203-208.                                                 | 5.2                   | 45                  |

| #  | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Design, synthesis and biochemical evaluation of novel multi-target inhibitors as potential anti-Parkinson agents. European Journal of Medicinal Chemistry, 2018, 143, 1543-1552.                                                                               | 5.5 | 40        |
| 20 | Novel 1,3-thiazolidin-4-one derivatives as promising anti- Candida agents endowed with anti-oxidant and chelating properties. European Journal of Medicinal Chemistry, 2016, 117, 144-156.                                                                     | 5.5 | 39        |
| 21 | Identification of phenolic components via LC–MS analysis and biological activities of two Centaurea species: C. drabifolia subsp. drabifolia and C. lycopifolia. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 436-441.                        | 2.8 | 35        |
| 22 | Combining inÂvitro, inÂvivo and in silico approaches to evaluate nutraceutical potentials and chemical<br>fingerprints of Moltkia aurea and Moltkia coerulea. Food and Chemical Toxicology, 2017, 107, 540-553.                                                | 3.6 | 31        |
| 23 | HPLC-DAD-UV analysis, anti-inflammatory and anti-neuropathic effects of methanolic extract of<br>Sideritis bilgeriana (lamiaceae) by NF-κB, TNF-α, IL-1β and IL-6 involvement. Journal of Ethnopharmacology,<br>2021, 265, 113338.                             | 4.1 | 29        |
| 24 | Antibacterial activities of extracts from twelve Centaurea species from Turkey. Archives of Biological<br>Sciences, 2011, 63, 685-690.                                                                                                                         | 0.5 | 29        |
| 25 | GC-MS analysis and <i>in vitro</i> antioxidant and enzyme inhibitory activities of essential oil from aerial parts of endemic <i>Thymus spathulifolius</i> Hausskn. et Velen. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 983-990.         | 5.2 | 28        |
| 26 | Biological effects and chemical characterization of Iris schachtii Markgr. extracts: A new source of bioactive constituents. Food and Chemical Toxicology, 2018, 112, 448-457.                                                                                 | 3.6 | 27        |
| 27 | Anti-hyperalgesic effect of Lippia grata leaf essential oil complexed with β-cyclodextrin in a chronic musculoskeletal pain animal model: Complemented with a molecular docking and antioxidant screening. Biomedicine and Pharmacotherapy, 2017, 91, 739-747. | 5.6 | 25        |
| 28 | A phytochemical study on Potentilla anatolica: An endemic Turkish plant. Industrial Crops and Products, 2015, 76, 1001-1007.                                                                                                                                   | 5.2 | 24        |
| 29 | A comparative in vitro and in silico study of the biological potential and chemical fingerprints of<br>Dorcycinum pentapyllum subsp. haussknechtii using three extraction procedures. New Journal of<br>Chemistry, 2017, 41, 13952-13960.                      | 2.8 | 24        |
| 30 | Metabolomic profile of Salvia viridis L. root extracts using HPLC–MS/MS technique and their<br>pharmacological properties: A comparative study. Industrial Crops and Products, 2019, 131, 266-280.                                                             | 5.2 | 23        |
| 31 | Multiple biological activities of two Onosma species (O. sericea and O. stenoloba) and HPLC-MS/MS characterization of their phytochemical composition. Industrial Crops and Products, 2020, 144, 112053.                                                       | 5.2 | 23        |
| 32 | Bioactivities of Achillea phrygia and Bupleurum croceum based on the composition of phenolic compounds: InÂvitro and in silico approaches. Food and Chemical Toxicology, 2017, 107, 597-608.                                                                   | 3.6 | 20        |
| 33 | Chemical profiling and pharmacoâ€ŧoxicological activity of <i>Origanum sipyleum</i> extracts:<br>Exploring for novel sources for potential therapeutic agents. Journal of Food Biochemistry, 2019, 43,<br>e13003.                                              | 2.9 | 19        |
| 34 | LC-MS, NMR fingerprint of Potentilla argentea and Potentilla recta extracts and their in vitro biopharmaceutical assessment. Industrial Crops and Products, 2019, 131, 125-133.                                                                                | 5.2 | 18        |
| 35 | Chemical fingerprints, antioxidant, enzyme inhibitory, and cell assays of three extracts obtained from<br>Sideritis ozturkii AytaA§ & Aksoy: An endemic plant from Turkey. Journal of Pharmaceutical and<br>Biomedical Analysis, 2019, 171, 118-125.           | 2.8 | 18        |
| 36 | Modern and traditional extraction techniques affect chemical composition and bioactivity of Tanacetum parthenium (L.) Sch.Bip. Industrial Crops and Products, 2020, 146, 112202.                                                                               | 5.2 | 18        |

| #  | Article                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | LC-MS Based Analysis and Biological Properties of Pseudocedrela kotschyi (Schweinf.) Harms Extracts:<br>A Valuable Source of Antioxidant, Antifungal, and Antibacterial Compounds. Antioxidants, 2021, 10,<br>1570.                                                                      | 5.1 | 18        |
| 38 | Fatty acid composition and Ω3∫Ω6 ratios of the muscle lipids of six fish species in Sugla Lake, Turkey.<br>Archives of Biological Sciences, 2012, 64, 471-477.                                                                                                                           | 0.5 | 17        |
| 39 | Fatty Acid Composition, Total Sugar Content and Anti-Diabetic Activity of Methanol and Water<br>Extracts of Nine Different Fruit Tree Leaves Collected from Mediterranean Region of Turkey.<br>International Journal of Food Properties, 2015, 18, 2268-2276.                            | 3.0 | 16        |
| 40 | Biological, chemical and in silico fingerprints of Dianthus calocephalus Boiss.: A novel source for rutin. Food and Chemical Toxicology, 2018, 113, 179-186.                                                                                                                             | 3.6 | 16        |
| 41 | Identification of phenolic profiles, fatty acid compositions, antioxidant activities, and enzyme<br>inhibition effects of seven wheat cultivars grown in Turkey: A phytochemical approach for their<br>nutritional value. International Journal of Food Properties, 2017, 20, 2373-2382. | 3.0 | 15        |
| 42 | A Study on Antioxidant Capacities and Fatty Acid Compositions of TwoDaphneSpecies from Turkey: New<br>Sources of Antioxidants and Essential Fatty Acids. Journal of Food Biochemistry, 2013, 37, 646-653.                                                                                | 2.9 | 14        |
| 43 | Chemical profile, antioxidant, and enzyme inhibitory properties of two <i>Scutellaria</i> species: <i>S. orientalis</i> L. and <i>S. salviifolia</i> Benth. Journal of Pharmacy and Pharmacology, 2019, 71, 270-280.                                                                     | 2.4 | 13        |
| 44 | Metabolomics profiling and biological properties of root extracts from two Asphodelus species: A. albus and A. aestivus. Food Research International, 2020, 134, 109277.                                                                                                                 | 6.2 | 13        |
| 45 | Chemical Profiling and Biological Evaluation of Nepeta baytopii Extracts and Essential Oil: An Endemic<br>Plant from Turkey. Plants, 2021, 10, 1176.                                                                                                                                     | 3.5 | 13        |
| 46 | Optimization of the extraction process of antioxidants from loquat leaves using response surface methodology. Journal of Food Processing and Preservation, 2017, 41, e13185.                                                                                                             | 2.0 | 12        |
| 47 | Chemical Characterization and Bioactive Properties of Different Extracts from Fibigia clypeata, an<br>Unexplored Plant Food. Foods, 2020, 9, 705.                                                                                                                                        | 4.3 | 12        |
| 48 | Antioxidant and Enzyme Inhibitory Activities of Extracts from Wild Mushroom Species from Turkey.<br>International Journal of Medicinal Mushrooms, 2017, 19, 327-336.                                                                                                                     | 1.5 | 12        |
| 49 | Screening of PossibleIn VitroNeuroprotective, Skin Care, Antihyperglycemic, and Antioxidative Effects of Anchusa undulataL. subsp.hybrida(Ten.) Coutinho from Turkey and Its Fatty Acid Profile.<br>International Journal of Food Properties, 2015, 18, 1491-1504.                       | 3.0 | 11        |
| 50 | The Importance of Asphodeline Species on Enzyme Inhibition: Anti-Elastase, Anti-Hyaluronidase and<br>Anti-Collagenase Potential. Turkish Journal of Pharmaceutical Sciences, 2016, 13, 323-327.                                                                                          | 1.4 | 11        |
| 51 | DNA protection, antioxidant, antibacterial and enzyme inhibition activities of heartwood and sapwood extracts from juniper and olive woods. RSC Advances, 2015, 5, 72950-72958.                                                                                                          | 3.6 | 10        |
| 52 | Network analysis, chemical characterization, antioxidant and enzyme inhibitory effects of foxglove<br>(Digitalis cariensis Boiss. ex Jaub. & Spach): A novel raw material for pharmaceutical applications.<br>Journal of Pharmaceutical and Biomedical Analysis, 2020, 191, 113614.      | 2.8 | 10        |
| 53 | The effect of pasteurisation temperature on the CLA content and fatty acid composition of white pickled cheese. International Journal of Dairy Technology, 2011, 64, 509-516.                                                                                                            | 2.8 | 8         |
| 54 | Chemical composition profile of the essential oil from hymenocrater bituminous and its health functionality. International Journal of Food Properties, 2017, 20, S972-S980.                                                                                                              | 3.0 | 7         |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effects of Orange Leaves Extraction Conditions on Antioxidant and Phenolic Content: Optimization Using Response Surface Methodology. Analytical Letters, 2018, 51, 1505-1519.                                                              | 1.8 | 7         |
| 56 | <i>Daphne oleoides</i> : An alternative source of important sesquiterpenes. International Journal of<br>Food Properties, 2017, 20, 549-559.                                                                                                | 3.0 | 6         |
| 57 | Essential Oil Composition of an UninvestigatedCentaureaSpecies from Turkey:Centaurea patulaDC<br>Journal of Essential Oil-bearing Plants: JEOP, 2016, 19, 485-491.                                                                         | 1.9 | 5         |
| 58 | NMR and LC-MSn coupled with pharmacological network analysis for the assessment of phytochemical content and biopharmaceutical potential of Carapa procera extracts. Journal of Pharmaceutical and Biomedical Analysis, 2021, 203, 114184. | 2.8 | 4         |
| 59 | A Prospective of Multiple Biopharmaceutical Activities of Procyanidinsâ€Rich <i>Uapaca togoensis</i> Pax Extracts: HPLCâ€ESIâ€TOFâ€MS Coupled with Bioinformatics Analysis. Chemistry and Biodiversity, 2021, 18, e2100299.                | 2.1 | 3         |
| 60 | New insights on Phyllanthus reticulatus Poir. leaves and stem bark extracts: UPLC-ESI-TOF-MS profiles, and biopharmaceutical and in silico analysis. New Journal of Chemistry, 0, , .                                                      | 2.8 | 3         |
| 61 | Novel insights into the fruit and seed extracts of <i>Morinda morindoides</i> (Baker) Milneâ€Redh:<br>HPLCâ€ESIâ€Qâ€TOFâ€MS profiling, antioxidant, and enzyme inhibitory propensities. Journal of Food<br>Biochemistry, 2020, 44, e13169. | 2.9 | 2         |
| 62 | Phenolic Composition, Antioxidant and Cytotoxic Prospective of three Linum species: A Potential Source of Novel Anticancer Pharmacophores. Current Organic Chemistry, 2018, 22, 1690-1696.                                                 | 1.6 | 2         |
| 63 | Analytical Procedures for Secondary Metabolites Determination: Recent Trends and Future<br>Perspectives. Letters in Drug Design and Discovery, 2018, 15, .                                                                                 | 0.7 | 2         |
| 64 | Effect of Three Centaurea Species Collected from Central Anatolia Region of Turkey on Human<br>Melanoma Cells. Natural Product Communications, 2016, 11, 1934578X1601100.                                                                  | 0.5 | 1         |
| 65 | A study on Antioxidant Properties of Different Extracts from Kitaibelia balansae. Proceedings (mdpi), 2019, 40, .                                                                                                                          | 0.2 | 0         |
| 66 | In vitro Antioxidant Properties of Bersama abyssinica Stem Bark Extracts. Proceedings (mdpi), 2019, 40,<br>21.                                                                                                                             | 0.2 | 0         |
| 67 | GC-MS Analysis and Antioxidant Potential of Essential Oil from Endemic Sideritis rubriflora<br>HubMor Proceedings (mdpi), 2019, 40, 24.                                                                                                    | 0.2 | 0         |