
Stephen M Keyse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4861560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene, 2022, 41, 2811-2823.	2.6	10
2	DUSP5-mediated inhibition of smooth muscle cell proliferation suppresses pulmonary hypertension and right ventricular hypertrophy. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H382-H389.	1.5	10
3	The integrin αvβ6 drives pancreatic cancer through diverse mechanisms and represents an effective target for therapy. Journal of Pathology, 2019, 249, 332-342.	2.1	66
4	Dual-specificity MAP kinase phosphatases in health and disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 124-143.	1.9	93
5	Regulation of atypical MAP kinases ERK3 and ERK4 by the phosphatase DUSP2. Scientific Reports, 2017, 7, 43471.	1.6	28
6	Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E317-E326.	3.3	63
7	New insights into the activation interaction partners and possible functions of MK5 PRAK. Frontiers in Bioscience - Landmark, 2016, 21, 374-384.	3.0	13
8	Heat Shock Factor 1 Is a Substrate for p38 Mitogen-Activated Protein Kinases. Molecular and Cellular Biology, 2016, 36, 2403-2417.	1.1	61
9	Dual-Specificity Map Kinase (MAPK) Phosphatases (MKPs) and Their Involvement in Cancer. , 2016, , 201-231.		1
10	Visualizing and Quantitating the Spatiotemporal Regulation of Ras/ERK Signaling by Dual-Specificity Mitogen-Activated Protein Phosphatases (MKPs). Methods in Molecular Biology, 2016, 1447, 197-215.	0.4	4
11	The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Seminars in Cell and Developmental Biology, 2016, 50, 125-132.	2.3	181
12	Selective Expression of the MAPK Phosphatase Dusp9/MKP-4 in Mouse Plasmacytoid Dendritic Cells and Regulation of IFN-β Production. Journal of Immunology, 2015, 195, 1753-1762.	0.4	8
13	Dual-specificity phosphatase 5 regulates nuclear ERK activity and suppresses skin cancer by inhibiting mutant Harvey-Ras (HRas ^{Q61L})-driven SerpinB2 expression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18267-18272.	3.3	64
14	Gene Trap Mice Reveal an Essential Function of Dual Specificity Phosphatase Dusp16/MKP-7 in Perinatal Survival and Regulation of Toll-like Receptor (TLR)-induced Cytokine Production. Journal of Biological Chemistry, 2014, 289, 2112-2126.	1.6	23
15	<scp>BRAF</scp> inhibitor resistance: are holidays and cocktails the answer?. Pigment Cell and Melanoma Research, 2014, 27, 693-695.	1.5	2
16	Dualâ€ s pecificity MAP kinase phosphatases (MKPs). FEBS Journal, 2013, 280, 489-504.	2.2	429
17	Phosphorylation of the Kinase Interaction Motif in Mitogen-activated Protein (MAP) Kinase Phosphatase-4 Mediates Cross-talk between Protein Kinase A and MAP Kinase Signaling Pathways. Journal of Biological Chemistry, 2011, 286, 38018-38026.	1.6	17
18	Distinct Docking Mechanisms Mediate Interactions between the Msg5 Phosphatase and Mating or Cell Integrity Mitogen-activated Protein Kinases (MAPKs) in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2011, 286, 42037-42050.	1.6	15

#	Article	IF	CITATIONS
19	Regulation of Caenorhabditis elegans p53/CEP-1–Dependent Germ Cell Apoptosis by Ras/MAPK Signaling. PLoS Genetics, 2011, 7, e1002238.	1.5	62
20	MAP Kinase Phosphatases. , 2010, , 755-769.		0
21	Cross-talk between the p38α and JNK MAPK Pathways Mediated by MAP Kinase Phosphatase-1 Determines Cellular Sensitivity to UV Radiation. Journal of Biological Chemistry, 2010, 285, 25928-25940.	1.6	63
22	Docking of PRAK/MK5 to the Atypical MAPKs ERK3 and ERK4 Defines a Novel MAPK Interaction Motif. Journal of Biological Chemistry, 2009, 284, 19392-19401.	1.6	36
23	Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Cellular Signalling, 2009, 21, 1794-1805.	1.7	97
24	Preface. Cancer and Metastasis Reviews, 2008, 27, 121-122.	2.7	2
25	Dual-specificity MAP kinase phosphatases (MKPs) and cancer. Cancer and Metastasis Reviews, 2008, 27, 253-261.	2.7	417
26	DUSP6/MKP-3 inactivates ERK1/2 but fails to bind and inactivate ERK5. Cellular Signalling, 2008, 20, 836-843.	1.7	70
27	The Ser186 phospho-acceptor site within ERK4 is essential for its ability to interact with and activate PRAK/MK5. Biochemical Journal, 2008, 411, 613-622.	1.7	27
28	Negative-feedback regulation of FGF signalling by DUSP6/MKP-3 is driven by ERK1/2 and mediated by Ets factor binding to a conserved site within the <i>DUSP6</i> / <i>MKP3</i> gene promoter. Biochemical Journal, 2008, 412, 287-298.	1.7	167
29	Does MK5 reconcile classical and atypical MAP kinases?. Frontiers in Bioscience - Landmark, 2008, Volume, 4617.	3.0	21
30	Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene, 2007, 26, 3203-3213.	2.6	686
31	Redox-mediated substrate recognition by Sdp1 defines a new group of tyrosine phosphatases. Nature, 2007, 447, 487-492.	13.7	42
32	The regulation of stress-activated MAP kinase signalling by protein phosphatases. , 2007, , 33-49.		9
33	Negative feedback predominates over cross-regulation to control ERK MAPK activity in response to FGF signalling in embryos. FEBS Letters, 2006, 580, 4242-4245.	1.3	44
34	Spatio-temporal regulation of mitogen-activated protein kinase (MAPK) signalling by protein phosphatases. Biochemical Society Transactions, 2006, 34, 842-845.	1.6	26
35	Diverse physiological functions for dual-specificity MAP kinase phosphatases. Journal of Cell Science, 2006, 119, 4607-4615.	1.2	302
36	Regulation of MAPK-activated Protein Kinase 5 Activity and Subcellular Localization by the Atypical MAPK ERK4/MAPK4. Journal of Biological Chemistry, 2006, 281, 35499-35510.	1.6	77

#	Article	IF	CITATIONS
37	Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO Journal, 2005, 24, 873-874.	3.5	0
38	The Dual-Specificity Protein Phosphatase DUSP9/MKP-4 Is Essential for Placental Function but Is Not Required for Normal Embryonic Development. Molecular and Cellular Biology, 2005, 25, 8323-8333.	1.1	67
39	Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Development (Cambridge), 2005, 132, 1305-1314.	1.2	97
40	Specific Inactivation and Nuclear Anchoring of Extracellular Signal-Regulated Kinase 2 by the Inducible Dual-Specificity Protein Phosphatase DUSP5. Molecular and Cellular Biology, 2005, 25, 1830-1845.	1.1	175
41	Both Nuclear-Cytoplasmic Shuttling of the Dual Specificity Phosphatase MKP-3 and Its Ability to Anchor MAP Kinase in the Cytoplasm Are Mediated by a Conserved Nuclear Export Signal. Journal of Biological Chemistry, 2004, 279, 41882-41891.	1.6	117
42	Activation of MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signal transduction pathway. EMBO Journal, 2004, 23, 4780-4791.	3.5	136
43	Negative Feedback Regulation of FGF Signaling Levels by Pyst1/MKP3 in Chick Embryos. Current Biology, 2003, 13, 1009-1018.	1.8	162
44	Both Binding and Activation of p38 Mitogen-Activated Protein Kinase (MAPK) Play Essential Roles in Regulation of the Nucleocytoplasmic Distribution of MAPK-Activated Protein Kinase 5 by Cellular Stress. Molecular and Cellular Biology, 2002, 22, 6931-6945.	1.1	77
45	Lines of communication. Journal of Cell Science, 2002, 115, 4391-4391.	1.2	1
46	Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase. Biochemical Journal, 2002, 364, 145-155.	1.7	46
47	YIL113wencodes a functional dual-specificity protein phosphatase which specifically interacts with and inactivates the Slt2/Mpk1p MAP kinase inS. cerevisiae. FEBS Letters, 2002, 527, 186-192.	1.3	32
48	Expression of the ERK-specific MAP kinase phosphatase PYST1/MKP3 in mouse embryos during morphogenesis and early organogenesis. Mechanisms of Development, 2002, 113, 193-196.	1.7	55
49	Distinct Binding Determinants for ERK2/p38α and JNK MAP Kinases Mediate Catalytic Activation and Substrate Selectivity of MAP Kinase Phosphatase-1. Journal of Biological Chemistry, 2001, 276, 16491-16500.	1.6	242
50	Membrane Proximal ERK Signaling Is Required for M-calpain Activation Downstream of Epidermal Growth Factor Receptor Signaling. Journal of Biological Chemistry, 2001, 276, 23341-23348.	1.6	186
51	Transcriptional Induction of MKP-1 in Response to Stress Is Associated with Histone H3 Phosphorylation-Acetylation. Molecular and Cellular Biology, 2001, 21, 8213-8224.	1.1	172
52	CL100/MKP-1 modulates JNK activation and apoptosis in response to cisplatin. Oncogene, 2000, 19, 5142-5152.	2.6	128
53	Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Current Opinion in Cell Biology, 2000, 12, 186-192.	2.6	755
54	Synergistic activation of themkp-1gene by protein kinase A signaling and USF, but not c-Myc. FEBS Letters, 2000, 474, 146-150.	1.3	44

#	Article	IF	CITATIONS
55	Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation. Nature Structural Biology, 1999, 6, 174-181.	9.7	141
56	The role of protein phosphatases in the regulation of mitogen and stress-activated protein kinases. Free Radical Research, 1999, 31, 341-349.	1.5	30
57	Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO Journal, 1999, 18, 664-674.	3.5	533
58	Protein phosphatases and the regulation of MAP kinase activity. Seminars in Cell and Developmental Biology, 1998, 9, 143-152.	2.3	140
59	MAP Kinase Inactivation Is Required Only for G2–M Phase Transition in Early Embryogenesis Cell Cycles of the StarfishesMarthasterias glacialisandAstropecten aranciacus. Developmental Biology, 1998, 202, 1-13.	0.9	30
60	Reversible Protein Phosphorylation Modulates Nucleotide Excision Repair of Damaged DNA by Human Cell Extracts. Nucleic Acids Research, 1996, 24, 433-440.	6.5	77
61	Inactivation of p42 MAP kinase by protein phosphatase 2A and a protein tyrosine phosphatase, but not CL100, in various cell lines. Current Biology, 1995, 5, 283-295.	1.8	344
62	Jamming the signals. Human and Experimental Toxicology, 1995, 14, 618-619.	1.1	6
63	An emerging family of dual specificity MAP kinase phosphatases. Biochimica Et Biophysica Acta - Molecular Cell Research, 1995, 1265, 152-160.	1.9	240
64	The CL100 gene, which encodes a dual specificity (Tyr/Thr) MAP kinase phosphatase, is highly conserved and maps to human chromosome 5q34. Human Genetics, 1994, 93, 513-6.	1.8	21
65	Amino acid sequence similarity between CL100, a dual-specificity MAP kinase phosphatase and cdc25. Trends in Biochemical Sciences, 1993, 18, 377-378.	3.7	98
66	Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature, 1992, 359, 644-647.	13.7	657
67	INDUCIBLE CELLULAR DEFENSE AGAINST OXIDATIVE STRESS IN CULTURED HUMAN CELLS. , 1991, , 19-24.		0
68	New trends in photobiology the interaction of UVA radiation with cultured cells. Journal of Photochemistry and Photobiology B: Biology, 1990, 4, 349-361.	1.7	254
69	Mutagenesis by hydrogen peroxide treatment of mammalian cells: a molecular analysis. Carcinogenesis, 1990, 11, 283-293.	1.3	119
70	Induction of the heme oxygenase gene in human skin fibroblasts by hydrogen peroxide and UVA (365) Tj ETQq0	0 Q rgBT /	Overlock 10 1 122

71	The spectrum of mutations generated by passage of a hydrogen peroxide damaged shuttle vector plasmid through a mammalian host. Nucleic Acids Research, 1989, 17, 8301-8312.	6.5	75
72	Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 99-103.	3.3	1,215

#	Article	IF	CITATIONS
73	Rapidly occurring DNA excision repair events determine the biological expression of u.vinduced damage in human cells. Carcinogenesis, 1987, 8, 1251-1256.	1.3	25
74	The Response of Normal and Ataxia-telangiectasia Human Fibroblasts to the Lethal Effects of Far, Mid and Near Ultraviolet Radiations. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1985, 48, 975-985.	1.0	10
75	Evidence that novobiocin and nalidixic acid do not inhibit excision repair in u.virradiated human skin fibroblasts at a pre-incision step. Carcinogenesis, 1985, 6, 1231-1233.	1.3	21
76	Excision Repair in u.v. (254 nm) Damaged Non-dividing Human Skin Fibroblasts: A Major Biological Role for DNA Polymerase Alpha. International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1985, 48, 723-735.	1.0	3
77	Excision repair in permeable arrested human skin fibroblasts damaged by UV (254 nm) radiation: Evidence that α- and β-polymerases act sequentially at the repolymerisation step. Mutation Research - DNA Repair Reports, 1985, 146, 109-119.	1.9	15
78	ACTION SPECTRA FOR INACTIVATION OF NORMAL and XERODERMA PIGMENTOSUM HUMAN SKIN FIBROBLASTS BY ULTRAVIOLET RADIATIONS. Photochemistry and Photobiology, 1983, 37, 307-312.	1.3	75