Jack P Antel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4860280/publications.pdf Version: 2024-02-01

IACK D ANTEL

#	Article	IF	CITATIONS
1	Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nature Neuroscience, 2014, 17, 131-143.	14.8	2,056
2	Oral Fingolimod (FTY720) for Relapsing Multiple Sclerosis. New England Journal of Medicine, 2006, 355, 1124-1140.	27.0	996
3	Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nature Medicine, 2016, 22, 586-597.	30.7	987
4	Rituximab in patients with primary progressive multiple sclerosis: Results of a randomized doubleâ€blind placeboâ€controlled multicenter trial. Annals of Neurology, 2009, 66, 460-471.	5.3	815
5	Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: Results of a phase II clinical trial with an altered peptide ligand. Nature Medicine, 2000, 6, 1167-1175.	30.7	783
6	iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron, 2017, 94, 278-293.e9.	8.1	730
7	Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, 557, 724-728.	27.8	693
8	TLR Signaling Tailors Innate Immune Responses in Human Microglia and Astrocytes. Journal of Immunology, 2005, 175, 4320-4330.	0.8	636
9	Neuroblastoma × spinal cord (NSC) hybrid cell lines resemble developing motor neurons. Developmental Dynamics, 1992, 194, 209-221.	1.8	628
10	Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. Nature Medicine, 2000, 6, 1176-1182.	30.7	506
11	An updated histological classification system for multiple sclerosis lesions. Acta Neuropathologica, 2017, 133, 13-24.	7.7	436
12	Comparison of polarization properties of human adult microglia and bloodâ€derived macrophages. Glia, 2012, 60, 717-727.	4.9	393
13	Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nature Medicine, 2014, 20, 1147-1156.	30.7	380
14	Multiple Sclerosis: Fas Signaling in Oligodendrocyte Cell Death. Journal of Experimental Medicine, 1996, 184, 2361-2370.	8.5	359
15	Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight, 2016, 1, .	5.0	356
16	Interferon β-1b decreases the migration of T lymphocytes in vitro: Effects on matrix metalloproteinase-9. Annals of Neurology, 1996, 40, 853-863.	5.3	338
17	Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nature Neuroscience, 2019, 22, 729-740.	14.8	327
18	Brain-immune connection: Immuno-regulatory properties of CNS-resident cells. Glia, 2000, 29, 293-304.	4.9	323

#	Article	IF	CITATIONS
19	Roles of microglia in brain development, tissue maintenance and repair. Brain, 2015, 138, 1138-1159.	7.6	316
20	Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Annals of Neurology, 1992, 31, 235-241.	5.3	311
21	Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy. Nature Communications, 2020, 11, 3406.	12.8	300
22	Chemical pathology of acute demyelinating lesions and its correlation with disability. Annals of Neurology, 1995, 38, 901-909.	5.3	288
23	Glial cell influence on the human blood-brain barrier. Glia, 2001, 36, 145-155.	4.9	282
24	MAFG-driven astrocytes promote CNS inflammation. Nature, 2020, 578, 593-599.	27.8	282
25	PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 1997, 50, 345-353.	2.9	279
26	Proton magnetic resonance spectroscopy of human brainin vivo in the evaluation of multiple sclerosis: Assessment of the load of disease. Magnetic Resonance in Medicine, 1990, 14, 154-159.	3.0	275
27	Extensive Cortical Remyelination in Patients with Chronic Multiple Sclerosis. Brain Pathology, 2007, 17, 129-138.	4.1	265
28	Fingolimod (FTY720) Enhances Remyelination Following Demyelination of Organotypic Cerebellar Slices. American Journal of Pathology, 2010, 176, 2682-2694.	3.8	254
29	Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncolmmunology, 2018, 7, e1412909.	4.6	247
30	FTY720 modulates human oligodendrocyte progenitor process extension and survival. Annals of Neurology, 2008, 63, 61-71.	5.3	244
31	Cells of the oligodendroglial lineage, myelination, and remyelination. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 184-193.	3.8	211
32	Vulnerability of Human Neurons to T Cell-Mediated Cytotoxicity. Journal of Immunology, 2003, 171, 368-379.	0.8	198
33	Use of proton magnetic resonance spectroscopy for monitoring disease progression in multiple sclerosis. Annals of Neurology, 1994, 36, 76-82.	5.3	192
34	Natalizumab effects on immune cell responses in multiple sclerosis. Annals of Neurology, 2006, 59, 748-754.	5.3	190
35	miRâ€155 as a multiple sclerosis–relevant regulator of myeloid cell polarization. Annals of Neurology, 2013, 74, 709-720.	5.3	189
36	Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2243-E2252.	7.1	189

#	Article	IF	CITATIONS
37	Type 2 Monocyte and Microglia Differentiation Mediated by Glatiramer Acetate Therapy in Patients with Multiple Sclerosis. Journal of Immunology, 2004, 172, 7144-7153.	0.8	187
38	Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. Journal of Leukocyte Biology, 1994, 56, 732-740.	3.3	184
39	Primary progressive multiple sclerosis: part of the MS disease spectrum or separate disease entity?. Acta Neuropathologica, 2012, 123, 627-638.	7.7	176
40	Determinants of Human B Cell Migration Across Brain Endothelial Cells. Journal of Immunology, 2003, 170, 4497-4505.	0.8	175
41	Multiple Sclerosis: Magnetization Transfer MR Imaging of White Matter before Lesion Appearance on T2-weighted Images. Radiology, 2000, 215, 824-830.	7.3	174
42	Microglia and multiple sclerosis. Journal of Neuroscience Research, 2005, 81, 363-373.	2.9	174
43	Genetic models for CNS inflammation. Nature Medicine, 2001, 7, 161-166.	30.7	169
44	B7/BB-1 antigen expression on adult human microglia studiedin vitro andin situ. European Journal of Immunology, 1994, 24, 3031-3037.	2.9	162
45	Peripherally derived macrophages modulate microglial function to reduce inflammation after CNS injury. PLoS Biology, 2018, 16, e2005264.	5.6	159
46	Neurological complications of coronavirus infection; a comparative review and lessons learned during the COVID-19 pandemic. Journal of the Neurological Sciences, 2020, 417, 117085.	0.6	159
47	Central nervous system-directed effects of FTY720 (fingolimod). Journal of the Neurological Sciences, 2008, 274, 13-17.	0.6	158
48	Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2012-2017.	7.1	156
49	Biology of Adult Human Microglia in Culture: Comparisons with Peripheral Blood Monocytes and Astrocytes. Journal of Neuropathology and Experimental Neurology, 1992, 51, 538-549.	1.7	153
50	Pro-inflammatory activation of primary microglia and macrophages increases 18 kDa translocator protein expression in rodents but not humans. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 2679-2690.	4.3	153
51	ADP and AMP Induce Interleukin-1 ¹² Release from Microglial Cells through Activation of ATP-Primed P2X ₇ Receptor Channels. Journal of Neuroscience, 2002, 22, 3061-3069.	3.6	150
52	Microglial Expression of the B7 Family Member B7 Homolog 1 Confers Strong Immune Inhibition: Implications for Immune Responses and Autoimmunity in the CNS. Journal of Neuroscience, 2005, 25, 2537-2546.	3.6	150
53	Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell, 2019, 176, 581-596.e18.	28.9	150
54	Pathogenesis of multiple sclerosis. Current Opinion in Neurology, 2005, 18, 225-230.	3.6	142

#	Article	IF	CITATIONS
55	Netrin 1 regulates blood–brain barrier function and neuroinflammation. Brain, 2015, 138, 1598-1612.	7.6	141
56	P2Y12 expression and function in alternatively activated human microglia. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e80.	6.0	139
57	Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Annals of Neurology, 2013, 73, 341-354.	5.3	130
58	The Tryptophan Metabolite 3-Hydroxyanthranilic Acid Plays Anti-Inflammatory and Neuroprotective Roles During Inflammation. American Journal of Pathology, 2011, 179, 1360-1372.	3.8	129
59	MerTK Is a Functional Regulator of Myelin Phagocytosis by Human Myeloid Cells. Journal of Immunology, 2016, 196, 3375-3384.	0.8	128
60	Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science, 2021, 372, .	12.6	127
61	Peripheral blood ?-? T cells lyse fresh human brain?Derived oligodendrocytes. Annals of Neurology, 1991, 30, 794-800.	5.3	124
62	Myelin basic protein and human coronavirus 229E cross-reactive T cells in multiple sclerosis. Annals of Neurology, 1996, 39, 233-240.	5.3	121
63	p75 Neurotrophin Receptor Expression on Adult Human Oligodendrocytes: Signaling without Cell Death in Response to NGF. Journal of Neuroscience, 1998, 18, 1297-1304.	3.6	121
64	Metabolic Control of Astrocyte Pathogenic Activity via cPLA2-MAVS. Cell, 2019, 179, 1483-1498.e22.	28.9	120
65	Statin Therapy Inhibits Remyelination in the Central Nervous System. American Journal of Pathology, 2009, 174, 1880-1890.	3.8	118
66	T follicular helper cells in human efferent lymph retain lymphoid characteristics. Journal of Clinical Investigation, 2019, 129, 3185-3200.	8.2	116
67	Dimethyl Fumarate Treatment Mediates an Anti-Inflammatory Shift in B Cell Subsets of Patients with Multiple Sclerosis. Journal of Immunology, 2017, 198, 691-698.	0.8	112
68	Migration of Multiple Sclerosis Lymphocytes Through Brain Endothelium. Archives of Neurology, 2002, 59, 391.	4.5	110
69	Astrocytes in multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 1114-1124.	3.0	108
70	Interferon-Î ³ Modulates Human Oligodendrocyte Susceptibility To Fas-Mediated Apoptosis. Journal of Neuropathology and Experimental Neurology, 2000, 59, 280-286.	1.7	107
71	Fc Receptors for IgG on Cultured Human Microglia Mediate Cytotoxicity and Phagocytosis of Antibody-coated Targets. Journal of Neuropathology and Experimental Neurology, 1994, 53, 27-36.	1.7	105
72	Netrin 1 and Dcc regulate oligodendrocyte process branching and membrane extension via Fyn and RhoA. Development (Cambridge), 2009, 136, 415-426.	2.5	105

#	Article	IF	CITATIONS
73	Enhanced Protein Kinase C Activity Correlates with the Growth Rate of Malignant Gliomas in Vitro. Neurosurgery, 1991, 29, 880-887.	1.1	101
74	Peripheral Nerve Injury Induces Persistent Vascular Dysfunction and Endoneurial Hypoxia, Contributing to the Genesis of Neuropathic Pain. Journal of Neuroscience, 2015, 35, 3346-3359.	3.6	101
75	A human glial hybrid cell line differentially expressing genes subserving oligodendrocyte and astrocyte phenotype. Journal of Neurobiology, 1995, 26, 283-293.	3.6	99
76	Neurobiological effects of sphingosine 1â€ p hosphate receptor modulation in the cuprizone model. FASEB Journal, 2011, 25, 1509-1518.	0.5	99
77	Cyclical and Dose-Dependent Responses of Adult Human Mature Oligodendrocytes to Fingolimod. American Journal of Pathology, 2008, 173, 1143-1152.	3.8	91
78	USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation. Nature Immunology, 2017, 18, 54-63.	14.5	90
79	Contribution of Astrocyte-Derived IL-15 to CD8 T Cell Effector Functions in Multiple Sclerosis. Journal of Immunology, 2010, 185, 5693-5703.	0.8	89
80	Oligodendrogliopathy in Multiple Sclerosis: Low Glycolytic Metabolic Rate Promotes Oligodendrocyte Survival. Journal of Neuroscience, 2016, 36, 4698-4707.	3.6	89
81	Interferon Beta Promotes Nerve Growth Factor Secretion Early in the Course of Multiple Sclerosis. Archives of Neurology, 2005, 62, 563.	4.5	87
82	Interferon-? secretion by peripheral blood T-cell subsets in multiple sclerosis: Correlation with disease phase and interferon-? therapy. Annals of Neurology, 1999, 45, 247-250.	5.3	86
83	Cytotoxic NKG2C+ CD4 T Cells Target Oligodendrocytes in Multiple Sclerosis. Journal of Immunology, 2013, 190, 2510-2518.	0.8	86
84	Oligodendrocyte injury in multiple sclerosis: a role for p53. Journal of Neurochemistry, 2003, 85, 635-644.	3.9	85
85	NKG2D-Mediated Cytotoxicity toward Oligodendrocytes Suggests a Mechanism for Tissue Injury in Multiple Sclerosis. Journal of Neuroscience, 2007, 27, 1220-1228.	3.6	84
86	Simvastatin regulates oligodendroglial process dynamics and survival. Glia, 2007, 55, 130-143.	4.9	84
87	Differential proliferative response of human and mouse astrocytes to gamma-interferon. Glia, 1992, 6, 269-280.	4.9	83
88	A Novel MicroRNA-132-Surtuin-1 Axis Underlies Aberrant B-cell Cytokine Regulation in Patients with Relapsing-Remitting Multiple Sclerosis. PLoS ONE, 2014, 9, e105421.	2.5	81
89	Roles of immunoglobulins and B cells in multiple sclerosis: From pathogenesis to treatment. Journal of Neuroimmunology, 2006, 180, 3-8.	2.3	80
90	Regulation of Th1 and Th2 Lymphocyte Migration by Human Adult Brain Endothelial Cells. Journal of Neuropathology and Experimental Neurology, 2001, 60, 1127-1136.	1.7	79

#	Article	IF	CITATIONS
91	In vivo differentiation of astrocytic brain tumors and isolated demyelinating lesions of the type seen in multiple sclerosis using1H magnetic resonance spectroscopic imaging. Annals of Neurology, 1998, 44, 273-278.	5.3	78
92	Regulation and Functional Effects of Monocyte Migration across Human Brain-Derived Endothelial Cells. Journal of Neuropathology and Experimental Neurology, 2003, 62, 412-419.	1.7	77
93	Direct and Indirect Effects of Immune and Central Nervous System–Resident Cells on Human Oligodendrocyte Progenitor Cell Differentiation. Journal of Immunology, 2015, 194, 761-772.	0.8	75
94	Dimethyl fumarate–induced lymphopenia in MS due to differential T-cell subset apoptosis. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e340.	6.0	73
95	Transcriptomic and clonal characterization of T cells in the human central nervous system. Science Immunology, 2020, 5, .	11.9	73
96	Characterization of T cell lines derived from glatiramer-acetate-treated multiple sclerosis patients. Journal of Neuroimmunology, 2000, 108, 201-206.	2.3	69
97	Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathologica, 2020, 140, 359-375.	7.7	69
98	Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: Termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia, 2003, 43, 231-242.	4.9	68
99	Contrasting potential of nitric oxide and peroxynitrite to mediate oligodendrocyte injury in multiple sclerosis. Glia, 2007, 55, 926-934.	4.9	68
100	Kinin B ₁ Receptor Expression and Function on Human Brain Endothelial Cells. Journal of Neuropathology and Experimental Neurology, 2000, 59, 896-906.	1.7	67
101	Migratory behavior of lymphocytes isolated from multiple sclerosis patients: Effects of interferon ?-1b therapy. Annals of Neurology, 1999, 46, 319-324.	5.3	66
102	CD40 engagement stimulates IL-12 p70 production by human microglial cells: basis for Th1 polarization in the CNS. Journal of Neuroimmunology, 2000, 102, 44-50.	2.3	66
103	Small-Molecule Stabilization of 14-3-3 Protein-Protein Interactions Stimulates Axon Regeneration. Neuron, 2017, 93, 1082-1093.e5.	8.1	66
104	Continued Administration of Ciliary Neurotrophic Factor Protects Mice from Inflammatory Pathology in Experimental Autoimmune Encephalomyelitis. American Journal of Pathology, 2006, 169, 584-598.	3.8	65
105	Differential responses of human microglia and blood-derived myeloid cells to FTY720. Journal of Neuroimmunology, 2011, 230, 10-16.	2.3	62
106	NBI-5788, an altered MBP83-99 peptide, induces a T-helper 2-like immune response in multiple sclerosis patients. Annals of Neurology, 2000, 48, 758-765.	5.3	61
107	Oligodendrocyte Progenitor Cell Susceptibility to Injury in Multiple Sclerosis. American Journal of Pathology, 2013, 183, 516-525.	3.8	61
108	Distinctive Properties of Human Adult Brain-Derived Myelin Progenitor Cells. American Journal of Pathology, 2004, 165, 2167-2175.	3.8	59

#	Article	IF	CITATIONS
109	B7 Expression and Antigen Presentation by Human Brain Endothelial Cells: Requirement for Proinflammatory Cytokines. Journal of Neuropathology and Experimental Neurology, 2000, 59, 129-136.	1.7	58
110	The Identity of Human Tissue-Emigrant CD8+ T Cells. Cell, 2020, 183, 1946-1961.e15.	28.9	58
111	COVID-19 and disease-modifying therapies in patients with demyelinating diseases of the central nervous system: A systematic review. Multiple Sclerosis and Related Disorders, 2021, 50, 102800.	2.0	58
112	Effects of fumarates on circulating and CNS myeloid cells in multiple sclerosis. Annals of Clinical and Translational Neurology, 2016, 3, 27-41.	3.7	57
113	Mechanism of γδT cell-induced human oligodendrocyte cytotoxicity: relevance to multiple sclerosis. Journal of Neuroimmunology, 1998, 87, 49-61.	2.3	56
114	Lymphocyte migration and multiple sclerosis: Relation with disease course and therapy. Annals of Neurology, 1999, 46, 253-256.	5.3	56
115	Production of <scp>IL</scp> â€27 in multiple sclerosis lesions by astrocytes and myeloid cells: Modulation of local immune responses. Glia, 2016, 64, 553-569.	4.9	56
116	Isolating, Culturing, and Polarizing Primary Human Adult and Fetal Microglia. Methods in Molecular Biology, 2013, 1041, 199-211.	0.9	55
117	Oligodendrocyte lysis by CD4+ T cells independent of tumor necrosis factor. Annals of Neurology, 1994, 35, 341-348.	5.3	54
118	p53 Induction by Tumor Necrosis Factorâ€Î± and Involvement of p53 in Cell Death of Human Oligodendrocytes. Journal of Neurochemistry, 1999, 73, 605-611.	3.9	53
119	The role of glial cells in multiple sclerosis disease progression. Nature Reviews Neurology, 2022, 18, 237-248.	10.1	53
120	Immune regulation and CNS autoimmune disease. Journal of Neuroimmunology, 1999, 100, 181-189.	2.3	52
121	Resistance of human adult oligodendrocytes to AMPA/kainate receptor-mediated glutamate injury. Brain, 2004, 127, 2636-2648.	7.6	52
122	Expression of a homologue of rat NG2 on human microglia. , 1999, 27, 259-268.		51
123	Reconstitution of circulating lymphocyte counts in FTY720-treated MS patients. Clinical Immunology, 2010, 137, 15-20.	3.2	51
124	Divergent Neuroinflammatory Regulation of Microglial TREM Expression and Involvement of NF-κB. Frontiers in Cellular Neuroscience, 2017, 11, 56.	3.7	51
125	Sphingosine-1-Phosphate Receptors in the Central Nervous and Immune Systems. Current Drug Targets, 2016, 17, 1841-1850.	2.1	50
126	Role of p38MAPK in S1P receptor-mediated differentiation of human oligodendrocyte progenitors. Glia, 2014, 62, 1361-1375.	4.9	49

#	Article	IF	CITATIONS
127	MerTK-mediated regulation of myelin phagocytosis by macrophages generated from patients with MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e402.	6.0	49
128	Dual effects of daily FTY720 on human astrocytes in vitro: relevance for neuroinflammation. Journal of Neuroinflammation, 2013, 10, 41.	7.2	48
129	NK cell-mediated lysis of autologous human oligodendrocytes. Journal of Neuroimmunology, 2001, 116, 107-115.	2.3	47
130	Th1 and Th2 lymphocyte migration across the human BBB is specifically regulated by interferon \hat{I}^2 and copolymer-1. Journal of Autoimmunity, 2005, 24, 119-124.	6.5	47
131	The majority of infiltrating CD8 T lymphocytes in multiple sclerosis lesions is insensitive to enhanced PD‣1 levels on CNS cells. Clia, 2011, 59, 841-856.	4.9	47
132	Multiple Sclerosis and Central Nervous System Demyelination. Journal of Autoimmunity, 1999, 13, 297-306.	6.5	45
133	A central role for RhoA during oligodendroglial maturation in the switch from Netrinâ€1â€mediated chemorepulsion to process elaboration. Journal of Neurochemistry, 2010, 113, 1589-1597.	3.9	44
134	Developmental trajectory of oligodendrocyte progenitor cells in the human brain revealed by single cell RNA sequencing. Glia, 2020, 68, 1291-1303.	4.9	44
135	Response of Human Oligodendrocyte Progenitors to Growth Factors and Axon Signals. Journal of Neuropathology and Experimental Neurology, 2010, 69, 930-944.	1.7	43
136	Fetal microglial phenotype in vitro carries memory of prior in vivo exposure to inflammation. Frontiers in Cellular Neuroscience, 2015, 9, 294.	3.7	43
137	Dendritic Cell Differentiation Signals Induce Anti-Inflammatory Properties in Human Adult Microglia. Journal of Immunology, 2008, 181, 8288-8297.	0.8	42
138	Mitochondrial and Bioenergetic Dysfunction in Trauma-Induced Painful Peripheral Neuropathy. Molecular Pain, 2015, 11, s12990-015-0057.	2.1	42
139	Regulation of miRNA 219 and miRNA Clusters 338 and 17-92 in Oligodendrocytes. Frontiers in Genetics, 2012, 3, 46.	2.3	41
140	The PTEN inhibitor bisperoxovanadium enhances myelination by amplifying IGFâ€1 signaling in rat and human oligodendrocyte progenitors. Glia, 2014, 62, 64-77.	4.9	40
141	Human central nervous system astrocytes support survival and activation of B cells: implications for MS pathogenesis. Journal of Neuroinflammation, 2018, 15, 114.	7.2	40
142	Immune regulatory and effector properties of human adult microglia studied in vitro and in situ. Advances in Neuroimmunology, 1994, 4, 273-281.	1.8	39
143	Heterogeneity of oligodendrocyte progenitor cells in adult human brain. Annals of Clinical and Translational Neurology, 2014, 1, 272-283.	3.7	39
144	Distinct migratory and cytokine responses of human microglia and macrophages to ATP. Brain, Behavior, and Immunity, 2010, 24, 1241-1248.	4.1	38

#	Article	IF	CITATIONS
145	Do Myelin-Directed Antibodies Predict Multiple Sclerosis?. New England Journal of Medicine, 2003, 349, 107-109.	27.0	37
146	Full-Length and Fragmented Netrin-1 in Multiple Sclerosis Plaques Are Inhibitors of Oligodendrocyte Precursor Cell Migration. American Journal of Pathology, 2013, 183, 673-680.	3.8	36
147	Distinct age and differentiation-state dependent metabolic profiles of oligodendrocytes under optimal and stress conditions. PLoS ONE, 2017, 12, e0182372.	2.5	36
148	Caspase 8 expression and signaling in Fas injury-resistant human fetal astrocytes. Glia, 2001, 33, 217-224.	4.9	35
149	T lymphocytes conditioned with Interferon β induce membrane and soluble VCAM on human brain endothelial cells. Journal of Neuroimmunology, 2001, 115, 161-167.	2.3	35
150	Differential effects of Th1 and Th2 lymphocyte supernatants on human microglia. Clia, 2003, 42, 36-45.	4.9	35
151	Regulation of Cellular and Molecular Trafficking across Human Brain Endothelial Cells by Th1- and Th2-Polarized Lymphocytes. Journal of Neuropathology and Experimental Neurology, 2004, 63, 223-232.	1.7	35
152	MicroRNA Expression Patterns in Human Astrocytes in Relation to Anatomical Location and Age. Journal of Neuropathology and Experimental Neurology, 2016, 75, 156-166.	1.7	35
153	Distinct Properties of Circulating CD8+ T Cells in FTY720-Treated Patients With Multiple Sclerosis. Archives of Neurology, 2010, 67, 1449-55.	4.5	32
154	Reconstitution of the peripheral immune repertoire following withdrawal of fingolimod. Multiple Sclerosis Journal, 2017, 23, 1225-1232.	3.0	32
155	Th1 Polarization of CD4+ T Cells by Toll-Like Receptor 3-Activated Human Microglia. Journal of Neuropathology and Experimental Neurology, 2007, 66, 848-859.	1.7	30
156	Sublethal oligodendrocyte injury: A reversible condition in multiple sclerosis?. Annals of Neurology, 2017, 81, 811-824.	5.3	30
157	Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proceedings of the United States of America, 2021, 118, .	7.1	30
158	Human Fetal Oligodendrocyte Progenitor Cells from Different Gestational Stages Exhibit Substantially Different Potential to Myelinate. Stem Cells and Development, 2012, 21, 1831-1837.	2.1	29
159	Multiple sclerosis iPS-derived oligodendroglia conserve their properties to functionally interact with axons and glia in vivo. Science Advances, 2020, 6, .	10.3	29
160	Widespread immunoreactivity for neuronal nuclei in cultured human and rodent astrocytes. Journal of Neurochemistry, 2008, 104, 1201-1209.	3.9	28
161	Species differences in immuneâ€mediated CNS tissue injury and repair: A (neuro)inflammatory topic. Glia, 2020, 68, 811-829.	4.9	28
162	Glial Cells as Regulators of Neuroimmune Interactions in the Central Nervous System. Journal of Immunology, 2020, 204, 251-255.	0.8	27

#	Article	IF	CITATIONS
163	DICAM promotes T _H 17 lymphocyte trafficking across the blood-brain barrier during autoimmune neuroinflammation. Science Translational Medicine, 2022, 14, eabj0473.	12.4	27
164	Basis for fluctuations in lymphocyte counts in fingolimod-treated patients with multiple sclerosis. Neurology, 2013, 81, 1768-1772.	1.1	26
165	MicroRNA-210 regulates the metabolic and inflammatory status of primary human astrocytes. Journal of Neuroinflammation, 2022, 19, 10.	7.2	26
166	Deep learning for high-throughput quantification of oligodendrocyte ensheathment at single-cell resolution. Communications Biology, 2019, 2, 116.	4.4	25
167	Heterogeneity of T-lymphocyte function in primary progressive multiple sclerosis: Relation to magnetic resonance imaging lesion volume. Annals of Neurology, 2000, 47, 234-237.	5.3	24
168	Innate Immune-Mediated Neuronal Injury Consequent to Loss of Astrocytes. Journal of Neuropathology and Experimental Neurology, 2008, 67, 590-599.	1.7	24
169	Limited TCF7L2 Expression in MS Lesions. PLoS ONE, 2013, 8, e72822.	2.5	24
170	HTLV Type 1 Tax Transduction in Microglial Cells and Astrocytes by Lentiviral Vectors. AIDS Research and Human Retroviruses, 2000, 16, 1771-1776.	1.1	21
171	NG2 immunoreactivity on human brain endothelial cells. Acta Neuropathologica, 2001, 102, 313-320.	7.7	21
172	Immunotherapy for multiple sclerosis: From theory to practice. Nature Medicine, 1996, 2, 1074-1075.	30.7	20
173	Potential for Interferon Beta–Induced Serum Antibodies in Multiple Sclerosis to Inhibit Endogenous Interferon-Regulated Chemokine/Cytokine Responses Within the Central Nervous System. Archives of Neurology, 2006, 63, 1296.	4.5	20
174	Central nervous system effects of current and emerging multiple sclerosis-directed immuno-therapies. Clinical Neurology and Neurosurgery, 2008, 110, 951-957.	1.4	20
175	RNA-binding protein altered expression and mislocalization in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	20
176	Oligodendrocyte Precursor Cell Transplantation into Organotypic Cerebellar Shiverer Slices: A Model to Study Myelination and Myelin Maintenance. PLoS ONE, 2012, 7, e41237.	2.5	19
177	Potential Benefit of the Charge-Stabilized Nanostructure Saline RNS60 for Myelin Maintenance and Repair. Scientific Reports, 2016, 6, 30020.	3.3	19
178	Inflammatory potential and migratory capacities across human brain endothelial cells of distinct glatiramer acetate-reactive T cells generated in treated multiple sclerosis patients. Clinical Immunology, 2004, 111, 38-46.	3.2	18
179	Inflammation and Remyelination in the Central Nervous System. American Journal of Pathology, 2004, 164, 1519-1522.	3.8	18
180	CXCR7 Is Involved in Human Oligodendroglial Precursor Cell Maturation. PLoS ONE, 2016, 11, e0146503.	2.5	18

#	Article	IF	CITATIONS
181	Age-related injury responses of human oligodendrocytes to metabolic insults: link to BCL-2 and autophagy pathways. Communications Biology, 2021, 4, 20.	4.4	17
182	Identification of novel myelin repair drugs by modulation of oligodendroglial differentiation competence. EBioMedicine, 2021, 65, 103276.	6.1	17
183	Distinct Function-Related Molecular Profile of Adult Human A2B5-Positive Pre-Oligodendrocytes Versus Mature Oligodendrocytes. Journal of Neuropathology and Experimental Neurology, 2019, 78, 468-479.	1.7	16
184	The attraction of adhesion molecules. Annals of Neurology, 1993, 34, 123-124.	5.3	15
185	Differential transcriptional response profiles in human myeloid cell populations. Clinical Immunology, 2018, 189, 63-74.	3.2	15
186	Astrocytes in the Pathogenesis of Multiple Sclerosis: An In Situ MicroRNA Study. Journal of Neuropathology and Experimental Neurology, 2019, 78, 1130-1146.	1.7	13
187	Immunology of oligodendrocyte precursor cells in vivo and in vitro. Journal of Neuroimmunology, 2019, 331, 28-35.	2.3	13
188	Oligodendrocyte/myelin injury and repair as a function of the central nervous system environment. Clinical Neurology and Neurosurgery, 2006, 108, 245-249.	1.4	12
189	Mitochondrial dynamics and bioenergetics regulated by netrinâ€1 in oligodendrocytes. Glia, 2021, 69, 392-412.	4.9	12
190	Size and ligand effects of gold nanoclusters in alteration of organellar state and translocation of transcription factors in human primary astrocytes. Nanoscale, 2021, 13, 3173-3183.	5.6	11
191	Brain-immune connection: Immuno-regulatory properties of CNS-resident cells. Clia, 2000, 29, 293.	4.9	11
192	Human brain endothelial cells supply support for monocyte immunoregulatory functions. Journal of Neuroimmunology, 2003, 135, 96-106.	2.3	10
193	Mechanisms of action of fingolimod in multiple sclerosis. Clinical and Experimental Neuroimmunology, 2014, 5, 49-54.	1.0	10
194	Effects of Biotin on survival, ensheathment, and ATP production by oligodendrocyte lineage cells in vitro. PLoS ONE, 2020, 15, e0233859.	2.5	10
195	Vitamin D Regulates MerTK-Dependent Phagocytosis in Human Myeloid Cells. Journal of Immunology, 2020, 205, 398-406.	0.8	10
196	Multiple sclerosis and immune regulatory cells. Brain, 2004, 127, 1915-1916.	7.6	9
197	Regulation of human glia by multiple sclerosis disease modifying therapies. Seminars in Immunopathology, 2015, 37, 639-649.	6.1	9
198	Comparative morphology and phagocytic capacity of primary human adult microglia with time-lapse imaging. Journal of Neuroimmunology, 2017, 310, 143-149.	2.3	9

#	Article	IF	CITATIONS
199	Americas Committee for Treatment and Research in Multiple Sclerosis Forum 2017: Environmental factors, genetics, and epigenetics in MS susceptibility and clinical course. Multiple Sclerosis Journal, 2018, 24, 4-5.	3.0	9
200	Human Oligodendrocyte Myelination Potential; Relation to Age and Differentiation. Annals of Neurology, 2022, 91, 178-191.	5.3	9
201	Diverse injury responses of human oligodendrocyte to mediators implicated in multiple sclerosis. Brain, 2022, 145, 4320-4333.	7.6	9
202	Regional and ageâ€related diversity of human mature oligodendrocytes. Glia, 2022, 70, 1938-1949.	4.9	9
203	Antigen and superantigen presentation in the human CNS. Journal of Neuroimmunology, 2000, 107, 118-123.	2.3	7
204	Helper CD4 T cells expressing granzyme B cause glial fibrillary acidic protein fragmentation in astrocytes in an MHCllâ€independent manner. Glia, 2019, 67, 582-593.	4.9	7
205	Contact-Dependent Granzyme B-Mediated Cytotoxicity of Th17-Polarized Cells Toward Human Oligodendrocytes. Frontiers in Immunology, 2022, 13, 850616.	4.8	7
206	T Cell-mediated Cytotoxicity of Human Gliomas. Neurosurgery, 1994, 35, 450-456.	1.1	4
207	Immunobiology of oligodendrocytes in multiple sclerosis. Advances in Neurology, 2006, 98, 47-63.	0.8	4
208	Isolation and Culture of Primary Human CNS Neural Cells. Springer Protocols, 2009, , 87-104.	0.3	3
209	Multiple Sclerosis as a Syndrome—Implications for Future Management. Frontiers in Neurology, 2020, 11, 784.	2.4	3
210	Modulation of sphingosine 1-phosphate signaling in neurologic disease. Neurology, 2011, 76, S1-2.	1.1	2
211	Assessment of Sphingosine-1-Phosphate Receptor Expression and Associated Intracellular Signaling Cascades in Primary Cells of the Human Central Nervous System. Methods in Molecular Biology, 2012, 874, 141-154.	0.9	2
212	Properties of human central nervous system neurons in a glia-depleted (isolated) culture system. Journal of Neuroscience Methods, 2015, 253, 142-150.	2.5	2
213	Human astrocytes and astrocytoma respond differently to resveratrol. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102441.	3.3	2
214	PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 1997, 50, 345-353.	2.9	2
215	Interferonâ€Î³ secretion by peripheral blood Tâ€cell subsets in multiple sclerosis: Correlation with disease phase and interferonâ€Î² therapy. Annals of Neurology, 1999, 45, 247-250.	5.3	2
216	IL-15 and IL-15Rα Expressed in Human Central Nervous System by Astrocytes Contribute to CD8 T Lymphocyte Activation and Persistence: Implications for Multiple Sclerosis. Clinical Immunology, 2007, 123, S147-S148.	3.2	1

#	Article	IF	CITATIONS
217	The search for the missing links in multiple sclerosis. Current Neurology and Neuroscience Reports, 2007, 7, 93-94.	4.2	1
218	The CNS as a therapeutic target in multiple sclerosis. Current Neurology and Neuroscience Reports, 2008, 8, 445-447.	4.2	1
219	New Directions in Multiple Sclerosis Therapy: Matching Therapy with Pathogenesis. Canadian Journal of Neurological Sciences, 2010, 37, S42-S48.	0.5	1
220	Sequencing the immunopathologic heterogeneity in multiple sclerosis. Annals of Clinical and Translational Neurology, 2015, 2, 873-874.	3.7	1
221	ISDN2014_0027: REMOVED: Identification of a unique molecular and functional microglia signature in health and disease. International Journal of Developmental Neuroscience, 2015, 47, 5-5.	1.6	1
222	MSJ 2018—editorial comment. Multiple Sclerosis Journal, 2018, 24, 90-91.	3.0	1
223	Effects of Current Medical Therapies on Reparative and Neuroprotective Functions in Multiple Sclerosis. , 2013, , 203-231.		0
224	A Novel Injectable Chitosan Sponge Containing Brain Derived Neurotrophic Factor (BDNF) to Enhance Human Oligodendrocyte Progenitor Cells' (OPC) Differentiation. Materials Research Society Symposia Proceedings, 2014, 1621, 127-132.	0.1	0
225	2018 Editors' commentary. Multiple Sclerosis Journal, 2018, 24, 1394-1395.	3.0	0
226	MSJ 2019 - Editorial comment. Multiple Sclerosis Journal, 2019, 25, 4-5.	3.0	0
227	Title is missing!. , 2020, 15, e0233859.		0
228	Title is missing!. , 2020, 15, e0233859.		0
229	Title is missing!. , 2020, 15, e0233859.		0

230 Title is missing!. , 2020, 15, e0233859.

0