David B Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4859796/publications.pdf Version: 2024-02-01

170 papers	25,101 citations	14655 66 h-index	⁷⁵¹⁸ 151 g-index
172	172	172	25184
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 2011, 333, 1024-1026.	12.6	3,858
2	The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology, 2006, 12, 450-455.	9.5	1,214
3	Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 2001, 414, 65-69.	27.8	1,096
4	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
5	Biodiversity and Resilience of Ecosystem Functions. Trends in Ecology and Evolution, 2015, 30, 673-684.	8.7	916
6	How well do we understand the impacts of alien species on ecosystem services? A panâ€European, crossâ€ŧaxa assessment. Frontiers in Ecology and the Environment, 2010, 8, 135-144.	4.0	870
7	Comparative Losses of British Butterflies, Birds, and Plants and the Global Extinction Crisis. Science, 2004, 303, 1879-1881.	12.6	764
8	Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Global Change Biology, 2010, 16, 3304-3313.	9.5	690
9	Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2012, 2, 121-124.	18.8	594
10	Phenology of British butterflies and climate change. Global Change Biology, 2000, 6, 407-416.	9.5	509
11	Disentangling the role of environmental and human pressures on biological invasions across Europe. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12157-12162.	7.1	470
12	The impact of proxy-based methods on mapping the distribution of ecosystem services. Journal of Applied Ecology, 2010, 47, 377-385.	4.0	405
13	Habitat microclimates drive fineâ€scale variation in extreme temperatures. Oikos, 2011, 120, 1-8.	2.7	398
14	A northward shift of range margins in British Odonata. Global Change Biology, 2005, 11, 502-506.	9.5	393
15	Plant traits as predictors of performance in ecological restoration. Journal of Applied Ecology, 2003, 40, 65-77.	4.0	382
16	Statistics for citizen science: extracting signals of change from noisy ecological data. Methods in Ecology and Evolution, 2014, 5, 1052-1060.	5.2	373
17	Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nature Communications, 2016, 7, 12459.	12.8	367
18	DIRECT AND INDIRECT EFFECTS OF CLIMATE AND HABITAT FACTORS ON BUTTERFLY DIVERSITY. Ecology, 2007, 88, 605-611.	3.2	356

#	Article	IF	CITATIONS
19	Plant extinctions and introductions lead to phylogenetic and taxonomic homogenization of the European flora. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21721-21725.	7.1	305
20	Declines in forage availability for bumblebees at a national scale. Biological Conservation, 2006, 132, 481-489.	4.1	302
21	Spatial covariance between biodiversity and other ecosystem service priorities. Journal of Applied Ecology, 2009, 46, 888-896.	4.0	292
22	Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1465-1470.	2.6	288
23	Impacts of climate warming and habitat loss on extinctions at species' low-latitude range boundaries. Global Change Biology, 2006, 12, 1545-1553.	9.5	271
24	Declining resilience of ecosystem functions under biodiversity loss. Nature Communications, 2015, 6, 10122.	12.8	246
25	Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid. BioControl, 2008, 53, 5-21.	2.0	233
26	Heterogeneous landscapes promote population stability. Ecology Letters, 2010, 13, 473-484.	6.4	233
27	Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. Journal of Animal Ecology, 2001, 70, 201-217.	2.8	227
28	Invasive alien predator causes rapid declines of native European ladybirds. Diversity and Distributions, 2012, 18, 717-725.	4.1	226
29	Spatial patterns in species distributions reveal biodiversity change. Nature, 2004, 432, 393-396.	27.8	214
30	Extending Ellenberg's indicator values to a new area: an algorithmic approach. Journal of Applied Ecology, 2000, 37, 3-15.	4.0	206
31	Host plants and butterfly biology. Do host-plant strategies drive butterfly status?. Ecological Entomology, 2004, 29, 12-26.	2.2	204
32	Altered geographic and temporal variability in phenology in response to climate change. Global Ecology and Biogeography, 2006, 15, 498-504.	5.8	195
33	Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. Journal of Applied Ecology, 2002, 39, 708-720.	4.0	187
34	Responses of plants and invertebrate trophic groups to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide–tolerant crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1899-1913.	4.0	185
35	Protected areas facilitate species' range expansions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14063-14068.	7.1	185
36	Balancing alternative land uses in conservation prioritization. , 2011, 21, 1419-1426.		183

#	Article	IF	CITATIONS
37	Longâ€term changes to the frequency of occurrence of British moths are consistent with opposing and synergistic effects of climate and landâ€use changes. Journal of Applied Ecology, 2014, 51, 949-957.	4.0	175
38	Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods in Ecology and Evolution, 2016, 7, 428-436.	5.2	170
39	An introduction to the Farm-Scale Evaluations of genetically modified herbicide-tolerant crops. Journal of Applied Ecology, 2003, 40, 2-16.	4.0	166
40	Density-distribution relationships in British butterflies. I. The effect of mobility and spatial scale. Journal of Animal Ecology, 2001, 70, 410-425.	2.8	154
41	Temperature-Dependent Alterations in Host Use Drive Rapid Range Expansion in a Butterfly. Science, 2012, 336, 1028-1030.	12.6	154
42	The Biological Records Centre: a pioneer of citizen science. Biological Journal of the Linnean Society, 2015, 115, 475-493.	1.6	144
43	Multiâ€generational longâ€distance migration of insects: studying the painted lady butterfly in the Western Palaearctic. Ecography, 2013, 36, 474-486.	4.5	137
44	Assisted colonization in a changing climate: a testâ€study using two U.K. butterflies. Conservation Letters, 2009, 2, 46-52.	5.7	133
45	Invertebrate responses to the management of genetically modified herbicide–tolerant and conventional spring crops. II. Within-field epigeal and aerial arthropods. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1863-1877.	4.0	127
46	On the rationale and interpretation of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1779-1799.	4.0	102
47	Invertebrates and vegetation of field margins adjacent to crops subject to contrasting herbicide regimes in the Farm Scale Evaluations of genetically modified herbicide–tolerant crops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1879-1898.	4.0	101
48	Changes in habitat specificity of species at their climatic range boundaries. Ecology Letters, 2009, 12, 1091-1102.	6.4	101
49	Range expansion through fragmented landscapes under a variable climate. Ecology Letters, 2013, 16, 921-929.	6.4	100
50	The development of butterfly indicators in the United Kingdom and assessments in 2010. Journal of Insect Conservation, 2011, 15, 139-151.	1.4	99
51	The use of opportunistic data for IUCN Red List assessments. Biological Journal of the Linnean Society, 2015, 115, 690-706.	1.6	99
52	Reconciling biodiversity and carbon conservation. Ecology Letters, 2013, 16, 39-47.	6.4	96
53	Harmonia axyridis in Great Britain: analysis of the spread and distribution of a non-native coccinellid. BioControl, 2008, 53, 55-67.	2.0	94
54	The influence of temperature on migration of Lepidoptera into Britain. Global Change Biology, 2005, 11, 507-514.	9.5	88

#	Article	IF	CITATIONS
55	Seasonal variation in the niche, habitat availability and population fluctuations of a bivoltine thermophilous insect near its range margin. Oecologia, 2003, 134, 439-444.	2.0	86
56	Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. Journal of Animal Ecology, 2001, 70, 201-217.	2.8	85
57	Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers' recording behaviour. Scientific Reports, 2016, 6, 33051.	3.3	85
58	The effects of visual apparency on bias in butterfly recording and monitoring. Biological Conservation, 2006, 128, 486-492.	4.1	83
59	Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 463-474.	2.6	82
60	Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nature Communications, 2019, 10, 4455.	12.8	82
61	Grazing management of calcareous grasslands and its implications for the conservation of beetle communities. Biological Conservation, 2005, 125, 193-202.	4.1	80
62	Weeds in fields with contrasting conventional and genetically modified herbicide–tolerant crops. II. Effects on individual species. Philosophical Transactions of the Royal Society B: Biological Sciences, 2003, 358, 1833-1846.	4.0	79
63	Coincidence in the distributions of butterflies and their foodplants. Ecography, 1998, 21, 279-288.	4.5	77
64	Changes in the composition of British butterfly assemblages over two decades. Global Change Biology, 2008, 14, 1464-1474.	9.5	76
65	Error propagation associated with benefits transfer-based mapping of ecosystem services. Biological Conservation, 2010, 143, 2487-2493.	4.1	75
66	An Ecological Classification of British Butterflies: Ecological Attributes and Biotope Occupancy. Journal of Insect Conservation, 2001, 5, 145-161.	1.4	73
67	Effects of urban land cover on the local species pool in Britain. Ecography, 1999, 22, 507-517.	4.5	72
68	Climate change, climatic variation and extreme biological responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160144.	4.0	72
69	Climatic Associations of British Species Distributions Show Good Transferability in Time but Low Predictive Accuracy for Range Change. PLoS ONE, 2012, 7, e40212.	2.5	68
70	National patterns of functional diversity and redundancy in predatory ground beetles and bees associated with key <scp>UK</scp> arable crops. Journal of Applied Ecology, 2014, 51, 142-151.	4.0	66
71	Reduced-effort schemes for monitoring butterfly populations. Journal of Applied Ecology, 2007, 44, 993-1000.	4.0	65
72	Spatial covariation between freshwater and terrestrial ecosystem services. , 2011, 21, 2034-2048.		65

#	Article	IF	CITATIONS
73	Using citizen science butterfly counts to predict species population trends. Conservation Biology, 2017, 31, 1350-1361.	4.7	65
74	Do urban areas act as foci for the spread of alien plant species? An assessment of temporal trends in the UK. Diversity and Distributions, 2009, 15, 338-345.	4.1	64
75	Population resilience to an extreme drought is influenced by habitat area and fragmentation in the local landscape. Ecography, 2013, 36, 579-586.	4.5	62
76	Application of generalized additive models to butterfly transect count data. Journal of Applied Statistics, 2001, 28, 897-909.	1.3	61
77	Troubling travellers: are ecologically harmful alien species associated with particular introduction pathways?. NeoBiota, 0, 32, 1-20.	1.0	58
78	Quantifying rangeâ€wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records. Methods in Ecology and Evolution, 2014, 5, 751-760.	5.2	56
79	Environmental drivers of annual population fluctuations in a trans-Saharan insect migrant. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	56
80	Coincidence between consumer and host occurrence: macrolepidoptera in Britain. Ecological Entomology, 1997, 22, 197-208.	2.2	55
81	Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Global Change Biology, 2015, 21, 3313-3322.	9.5	53
82	The effectiveness of protected areas in the conservation of species with changing geographical ranges. Biological Journal of the Linnean Society, 2015, 115, 707-717.	1.6	53
83	Large extents of intensive land use limit community reorganization during climate warming. Global Change Biology, 2017, 23, 2272-2283.	9.5	52
84	Harmonia axyridis in Great Britain: analysis of the spread and distribution of a non-native coccinellid. BioControl, 2008, 53, 55-67.	2.0	52
85	A new Red List of British butterflies. Insect Conservation and Diversity, 2011, 4, 159-172.	3.0	49
86	Habitat associations of species show consistent but weak responses to climate. Biology Letters, 2012, 8, 590-593.	2.3	49
87	Population density but not stability can be predicted from species distribution models. Journal of Applied Ecology, 2012, 49, 581-590.	4.0	49
88	Ecological monitoring with citizen science: the design and implementation of schemes for recording plants in Britain and Ireland. Biological Journal of the Linnean Society, 2015, 115, 505-521.	1.6	48
89	European butterfly populations vary in sensitivity to weather across their geographical ranges. Global Ecology and Biogeography, 2017, 26, 1374-1385.	5.8	48
90	Does diet breadth control herbivorous insect distribution size? Life history and resource outlets for specialist butterflies. Journal of Insect Conservation, 2005, 9, 187-200.	1.4	47

#	Article	IF	CITATIONS
91	Developing and enhancing biodiversity monitoring programmes: a collaborative assessment of priorities. Journal of Applied Ecology, 2015, 52, 686-695.	4.0	47
92	A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. Journal of Applied Ecology, 2016, 53, 501-510.	4.0	47
93	Developing and launching a wider countryside butterfly survey across the United Kingdom. Journal of Insect Conservation, 2011, 15, 279-290.	1.4	45
94	Inventory of terrestrial alien arthropod predators and parasites established in Europe. BioControl, 2011, 56, 477-504.	2.0	44
95	Indexing butterfly abundance whilst accounting for missing counts and variability in seasonal pattern. Methods in Ecology and Evolution, 2013, 4, 637-645.	5.2	42
96	Pollinator monitoring more than pays for itself. Journal of Applied Ecology, 2021, 58, 44-57.	4.0	41
97	Lepidoptera communities across an agricultural gradient: how important are habitat area and habitat diversity in supporting high diversity?. Journal of Insect Conservation, 2015, 19, 403-420.	1.4	39
98	Annual estimates of occupancy for bryophytes, lichens and invertebrates in the UK, 1970–2015. Scientific Data, 2019, 6, 259.	5.3	39
99	The changing status of the Chalkhill Blue butterfly Polyommatus coridon in the UK: the impacts of conservation policies and environmental factors. Journal of Insect Conservation, 2008, 12, 629-638.	1.4	38
100	Potential climatic control of seedbank density. Seed Science Research, 1999, 9, 101-110.	1.7	37
101	The role of â€~Big Society' in monitoring the state of the natural environment. Journal of Environmental Monitoring, 2011, 13, 2687.	2.1	37
102	An agenda for the future of biological recording for ecological monitoring and citizen science. Biological Journal of the Linnean Society, 2015, 115, 779-784.	1.6	37
103	Occurrence of epiphytic bryophytes in a 'tetrad' transect across southern Britain. 2. Analysis and modelling of epiphyte–environment relationships. Journal of Bryology, 2004, 26, 181-197.	1.2	34
104	The role of ecological interactions in determining species ranges and range changes. Biological Journal of the Linnean Society, 2015, 115, 647-663.	1.6	34
105	Surrogacy and persistence in reserve selection: landscape prioritization for multiple taxa in Britain. Journal of Applied Ecology, 2009, 46, 82-91.	4.0	33
106	Beyond biological control: nonâ€pest insects and their pathogens in a changing world. Insect Conservation and Diversity, 2009, 2, 65-72.	3.0	33
107	Reduced variability in rangeâ€edge butterfly populations over three decades of climate warming. Global Change Biology, 2012, 18, 1531-1539.	9.5	32
108	Data-derived metrics describing the behaviour of field-based citizen scientists provide insights for project design and modelling bias. Scientific Reports, 2020, 10, 11009.	3.3	31

#	Article	IF	CITATIONS
109	Integrating species and habitat data for nature conservation in Great Britain: data sources and methods. Global Ecology and Biogeography, 1999, 8, 329-345.	5.8	30
110	A Generalized Abundance Index for Seasonal Invertebrates. Biometrics, 2016, 72, 1305-1314.	1.4	30
111	Habitat associations of thermophilous butterflies are reduced despite climatic warming. Global Change Biology, 2012, 18, 2720-2729.	9.5	29
112	The pitfalls of ecological forecasting. Biological Journal of the Linnean Society, 2015, 115, 767-778.	1.6	29
113	Butterfly abundance in a warming climate: patterns in space and time are not congruent. Journal of Insect Conservation, 2011, 15, 233-240.	1.4	28
114	Urban indicators for UK butterflies. Ecological Indicators, 2017, 76, 184-193.	6.3	28
115	Spread of a model invasive alien species, the harlequin ladybird Harmonia axyridis in Britain and Ireland. Scientific Data, 2018, 5, 180239.	5.3	28
116	Synchrony of butterfly populations across species' geographic ranges. Oikos, 2010, 119, 1690-1696.	2.7	27
117	DAISIE and arthropod invasions in Europe. BioRisk, 0, 4, 1-3.	0.2	27
118	A phylogenetically-informed trait-based analysis of range change in the vascular plant flora of Britain. Biodiversity and Conservation, 2014, 23, 171-185.	2.6	26
119	Comparison of trends in butterfly populations between monitoring schemes. Journal of Insect Conservation, 2015, 19, 313-324.	1.4	26
120	High Abundances of Species in Protected Areas in Parts of their Geographic Distributions Colonized during a Recent Period of Climatic Change. Conservation Letters, 2015, 8, 97-106.	5.7	26
121	Empirical realised niche models for British higher and lower plants - development and preliminary testing. Journal of Vegetation Science, 2010, 21, 643.	2.2	25
122	Effects of Natura 2000 on nontarget bird and butterfly species based on citizen science data. Conservation Biology, 2020, 34, 666-676.	4.7	25
123	Scope for strategic ecological assessment of trunk-road development in England with respect to potential impacts on lowland heathland, the Dartford warbler (Sylvia undata) and the sand lizard (Lacerta agilis). Journal of Environmental Management, 1998, 53, 147-163.	7.8	24
124	Measuring functional connectivity using longâ€ŧerm monitoring data. Methods in Ecology and Evolution, 2011, 2, 527-533.	5.2	24
125	Spatial trends in the sighting dates of British butterflies. International Journal of Biometeorology, 2003, 47, 188-192.	3.0	23
126	Assessing the condition of lake habitats: a test of methods for surveying aquatic macrophyte communities. Hydrobiologia, 2010, 656, 87-97.	2.0	22

#	Article	IF	CITATIONS
127	The effects of habitat fragmentation on niche requirements of the marsh fritillary, Euphydryas aurinia, (Rottemburg, 1775) on calcareous grasslands in southern UK. Journal of Insect Conservation, 2011, 15, 269-277.	1.4	22
128	Two Species with an Unusual Combination of Traits Dominate Responses of British Grasshoppers and Crickets to Environmental Change. PLoS ONE, 2015, 10, e0130488.	2.5	22
129	Efficient occupancy model-fitting for extensive citizen-science data. PLoS ONE, 2017, 12, e0174433.	2.5	22
130	Latitudinal gradients in butterfly population variability are influenced by landscape heterogeneity. Ecography, 2014, 37, 863-871.	4.5	21
131	Uncertainty in thermal tolerances and climatic debt. Nature Climate Change, 2012, 2, 638-639.	18.8	20
132	Overcoming the challenges of public data archiving for citizen science biodiversity recording and monitoring schemes. Journal of Applied Ecology, 2018, 55, 2544-2551.	4.0	20
133	Representation of ecosystem services by tiered conservation strategies. Conservation Letters, 2010, 3, 184-191.	5.7	18
134	Turnover and trends in butterfly communities on two British tidal islands: stochastic influences and deterministic factors. Journal of Biogeography, 2010, 37, 2291-2304.	3.0	16
135	Dynamic Models for Longitudinal Butterfly Data. Journal of Agricultural, Biological, and Environmental Statistics, 2016, 21, 1-21.	1.4	16
136	A novel parasitoid and a declining butterfly: cause or coincidence?. Ecological Entomology, 2011, 36, 271-281.	2.2	15
137	The design, launch and assessment of a new volunteer-based plant monitoring scheme for the United Kingdom. PLoS ONE, 2019, 14, e0215891.	2.5	15
138	Temporal validation plots: quantifying how well correlative species distribution models predict species' range changes over time. Methods in Ecology and Evolution, 2014, 5, 407-420.	5.2	14
139	Beyond the EDGE with EDAM: Prioritising British Plant Species According to Evolutionary Distinctiveness, and Accuracy and Magnitude of Decline. PLoS ONE, 2015, 10, e0126524.	2.5	14
140	A Synthesis is Emerging between Biodiversity–Ecosystem Function and Ecological Resilience Research: Reply to Mori. Trends in Ecology and Evolution, 2016, 31, 89-92.	8.7	14
141	Research questions to facilitate the future development of European long-term ecosystem research infrastructures: A horizon scanning exercise. Journal of Environmental Management, 2019, 250, 109479.	7.8	13
142	Brownfield sites promote biodiversity at a landscape scale. Science of the Total Environment, 2022, 804, 150162.	8.0	13
143	Can traitâ€based analyses of changes in species distribution be transferred to new geographic areas?. Global Ecology and Biogeography, 2014, 23, 1009-1018.	5.8	12
144	Developing a biodiversityâ€based indicator for largeâ€scale environmental assessment: a case study of proposed shale gas extraction sites in Britain. Journal of Applied Ecology, 2017, 54, 872-882.	4.0	12

#	Article	IF	CITATIONS
145	Government targets for protected area management: will threatened butterflies benefit?. Biodiversity and Conservation, 2007, 16, 3719-3736.	2.6	11
146	Harmonia axyridis in Europe: spread and distribution of a non-native coccinellid. , 2007, , 5-21.		11
147	The relative exploitation of annuals as larval host plants by European butterflies. Journal of Natural History, 2008, 42, 1079-1093.	0.5	11
148	Unbiased inference of plant flowering phenology from biological recording data. Biological Journal of the Linnean Society, 2015, 115, 543-554.	1.6	11
149	Critical loads for nitrogen deposition for Great Britain. Water, Air, and Soil Pollution, 1995, 85, 2527-2532.	2.4	10
150	The role of the North Atlantic Oscillation in controlling U.K. butterfly population size and phenology. Ecological Entomology, 2012, 37, 221-232.	2.2	10
151	The Verification of Ecological Citizen Science Data: Current Approaches and Future Possibilities. Citizen Science: Theory and Practice, 2021, 6, 12.	1.2	10
152	A method for estimating the extent of standing fresh waters of different trophic states in Great Britain. Aquatic Conservation: Marine and Freshwater Ecosystems, 2001, 11, 199-216.	2.0	9
153	Methods for targeting the restoration of grazing marsh and wet grassland communities at a national, regional and local scale. Journal for Nature Conservation, 2006, 14, 46-66.	1.8	9
154	Allee effects and the spatial dynamics of a locally endangered butterfly, the high brown fritillary (Argynnis adippe). , 2014, 24, 108-120.		9
155	Fifty years of the Biological Records Centre. Biological Journal of the Linnean Society, 2015, 115, 469-474.	1.6	9
156	Introduced plants as novel Anthropocene habitats for insects. Global Change Biology, 2020, 26, 971-988.	9.5	9
157	Local adaptation to climate anomalies relates to species phylogeny. Communications Biology, 2022, 5, 143.	4.4	9
158	Predicting resilience of ecosystem functioning from coâ€varying species' responses to environmental change. Ecology and Evolution, 2019, 9, 11775-11790.	1.9	8
159	Functional data analysis of multi-species abundance and occupancy data sets. Ecological Indicators, 2019, 104, 156-165.	6.3	6
160	Development of the European Ladybirds Smartphone Application: A Tool for Citizen Science. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	6
161	Patterns and causes of covariation in bird and butterfly community structure. Landscape Ecology, 2015, 30, 1461-1472.	4.2	5
162	Harmonia axyridis in Great Britain: analysis of the spread and distribution of a non-native coccinellid. , 2007, , 55-67.		3

#	Article	IF	CITATIONS
163	Bioclimatic context of species' populations determines community stability. Global Ecology and Biogeography, 2022, 31, 1542-1555.	5.8	3
164	Does a short Pollard walk transect capture butterfly and bee diversity? A test to inform pollinator monitoring and community science initiatives. Insect Conservation and Diversity, 0, , .	3.0	1
165	Butterflies reset the calendar. Nature Climate Change, 2011, 1, 101-102.	18.8	0
166	The influence of chalk grasslands on butterfly phenology and ecology. Ecology and Evolution, 2021, 11, 14521-14539.	1.9	0
167	Developing and launching a wider countryside butterfly survey across the United Kingdom. , 2010, , 349-360.		0
168	Butterfly abundance in a warming climate: patterns in space and time are not congruent. , 2010, , 141-148.		0
169	The development of butterfly indicators in the United Kingdom and assessments in 2010. , 2010, , 15-27.		0
170	Developing a national indicator of functional connectivity. Ecological Indicators, 2022, 136, 108610.	6.3	0