
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4857615/publications.pdf Version: 2024-02-01

DAN PARSONS

#	Article	lF	CITATIONS
1	Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Marine Geology, 2014, 352, 451-468.	2.1	669
2	Flow in meander bends with recirculation at the inner bank. Water Resources Research, 2003, 39, .	4.2	202
3	Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	196
4	Fluvial sediment supply to a mega-delta reduced by shifting tropical-cyclone activity. Nature, 2016, 539, 276-279.	27.8	187
5	Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons. Science Advances, 2017, 3, e1700200.	10.3	170
6	The pervasive role of biological cohesion in bedform development. Nature Communications, 2015, 6, 6257.	12.8	165
7	Powerful turbidity currents driven by dense basal layers. Nature Communications, 2018, 9, 4114.	12.8	164
8	River bank instability from unsustainable sand mining in the lower Mekong River. Nature Sustainability, 2020, 3, 217-225.	23.7	153
9	Velocity Mapping Toolbox (VMT): a processing and visualization suite for movingâ€vessel ADCP measurements. Earth Surface Processes and Landforms, 2013, 38, 1244-1260.	2.5	151
10	Form roughness and the absence of secondary flow in a large confluence–diffluence, Rio Paraná, Argentina. Earth Surface Processes and Landforms, 2007, 32, 155-162.	2.5	144
11	Numerical modelling of flow structures over idealized transverse aeolian dunes of varying geometry. Geomorphology, 2004, 59, 149-164.	2.6	141
12	Morphology, flow structure, and suspended bed sediment transport at two large braidâ€bar confluences. Water Resources Research, 2009, 45, .	4.2	131
13	Causes of rapid mixing at a junction of two large rivers: RÃo ParanÃ; and RÃo Paraguay, Argentina. Journal of Geophysical Research, 2008, 113, .	3.3	115
14	The role of biophysical cohesion on subaqueous bed form size. Geophysical Research Letters, 2016, 43, 1566-1573.	4.0	110
15	Comparison of Fixed- and Moving-Vessel Flow Measurements with an aDp in a Large River. Journal of Hydraulic Engineering, 2007, 133, 1299-1309.	1.5	96
16	The orientation of helical flow in curved channels. Sedimentology, 2006, 53, 249-257.	3.1	92
17	Flow separation at the inner (convex) and outer (concave) banks of constantâ€width and widening openâ€channel bends. Earth Surface Processes and Landforms, 2013, 38, 696-716.	2.5	92
18	How to recognize crescentic bedforms formed by supercritical turbidity currents in the geologic record: Insights from active submarine channels. Geology, 2018, 46, 563-566.	4.4	82

#	Article	IF	CITATIONS
19	Numerical modelling of airflow over an idealised transverse dune. Environmental Modelling and Software, 2004, 19, 153-162.	4.5	80
20	Sticky stuff: Redefining bedform prediction in modern and ancient environments. Geology, 2015, 43, 399-402.	4.4	80
21	On the relationship between flow and suspended sediment transport over the crest of a sand dune, RÃÂo Paraná, Argentina. Sedimentology, 2010, 57, 252-272.	3.1	74
22	Influence of junction angle on threeâ€dimensional flow structure and bed morphology at confluent meander bends during different hydrological conditions. Earth Surface Processes and Landforms, 2015, 40, 252-271.	2.5	74
23	Flow fields, bed shear stresses, and suspended bed sediment dynamics in bifurcations of a large river. Water Resources Research, 2012, 48, .	4.2	73
24	Dunes in the world's big rivers are characterized by low-angle lee-side slopes and a complex shape. Nature Geoscience, 2020, 13, 156-162.	12.9	72
25	Direct Monitoring Reveals Initiation of Turbidity Currents From Extremely Dilute River Plumes. Geophysical Research Letters, 2019, 46, 11310-11320.	4.0	71
26	The theoretical foundations and potential for large-eddy simulation (LES) in fluvial geomorphic and sedimentological research. Earth-Science Reviews, 2005, 71, 271-304.	9.1	70
27	Modulation of outer bank erosion by slump blocks: Disentangling the protective and destructive role of failed material on the threeâ€dimensional flow structure. Geophysical Research Letters, 2015, 42, 10,663.	4.0	65
28	The Sedimentology and Alluvial Architecture of a Large Braid Bar, Rio Parana, Argentina. Journal of Sedimentary Research, 2009, 79, 629-642.	1.6	64
29	Threeâ€dimensional flow structure and bed morphology in large elongate meander loops with different outer bank roughness characteristics. Water Resources Research, 2016, 52, 9621-9641.	4.2	60
30	Assessing the credibility of a series of computational fluid dynamic simulations of open channel flow. Hydrological Processes, 2003, 17, 1539-1560.	2.6	58
31	Gravity-driven flow in a submarine channel bend: Direct field evidence of helical flow reversal. Geology, 2010, 38, 1063-1066.	4.4	58
32	Impact of dams and climate change on suspended sediment flux to the Mekong delta. Science of the Total Environment, 2021, 755, 142468.	8.0	54
33	Suspended sediment transport and deposition over a dune: RÃo ParanÃ _i , Argentina. Earth Surface Processes and Landforms, 2009, 34, 1605-1611.	2.5	53
34	An experimental study of discharge partitioning and flow structure at symmetrical bifurcations. Earth Surface Processes and Landforms, 2011, 36, 2069-2082.	2.5	52
35	Beyond equilibrium: Re-evaluating physical modelling of fluvial systems to represent climate changes. Earth-Science Reviews, 2018, 181, 82-97.	9.1	52
36	What determines the downstream evolution of turbidity currents?. Earth and Planetary Science Letters, 2020, 532, 116023.	4.4	52

#	Article	IF	CITATIONS
37	Flow dynamics and mixing processes in hydraulic jump arrays: Implications for channel-lobe transition zones. Marine Geology, 2016, 381, 181-193.	2.1	51
38	Extremes in dune preservation: Controls on the completeness of fluvial deposits. Earth-Science Reviews, 2015, 150, 652-665.	9.1	50
39	Emergence of coherent flow structures over a gravel surface: A numerical experiment. Water Resources Research, 2007, 43, .	4.2	49
40	First direct measurements of hydraulic jumps in an active submarine density current. Geophysical Research Letters, 2013, 40, 5904-5908.	4.0	48
41	Scales and causes of heterogeneity in bars in a large multiâ€channel river: RÃo ParanÃi, Argentina. Sedimentology, 2014, 61, 1055-1085.	3.1	48
42	Discrimination of bed form scales using robust spline filters and wavelet transforms: Methods and application to synthetic signals and bed forms of the RÃo ParanÃ _i , Argentina. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1400-1418.	2.8	47
43	Simulating tidal and storm surge hydraulics with a simple 2D inertia based model, in the Humber Estuary, U.K. Estuarine, Coastal and Shelf Science, 2015, 155, 126-136.	2.1	47
44	The impact of significant input of fine sediment on benthic fauna at tributary junctions: a case study of the Bermejo–Paraguay River confluence, Argentina. Ecohydrology, 2015, 8, 340-352.	2.4	46
45	Efficient preservation of young terrestrial organic carbon in sandy turbidity-current deposits. Geology, 2020, 48, 882-887.	4.4	46
46	Carbon dioxide emissions by rock organic carbon oxidation and the net geochemical carbon budget of the Mackenzie River Basin. Numerische Mathematik, 2019, 319, 473-499.	1.4	45
47	Response of riverâ€dominated delta channel networks to permanent changes in river discharge. Geophysical Research Letters, 2010, 37, .	4.0	44
48	Nonlinear Modeling and Verification of a Heaving Point Absorber for Wave Energy Conversion. IEEE Transactions on Sustainable Energy, 2018, 9, 453-461.	8.8	44
49	High-resolution numerical modelling of flow—vegetation interactions. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 775-793.	1.7	43
50	Novel Acoustic Method Provides First Detailed Measurements of Sediment Concentration Structure Within Submarine Turbidity Currents. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015904.	2.6	43
51	The influence of flow discharge variations on the morphodynamics of a diffluence–confluence unit on a large river. Earth Surface Processes and Landforms, 2018, 43, 349-362.	2.5	41
52	Near-bed and surface flow division patterns in experimental river bifurcations. Water Resources Research, 2014, 50, 1506-1530.	4.2	40
53	On the evolution and form of coherent flow structures over a gravel bed: Insights from whole flow field visualization and measurement. Journal of Geophysical Research F: Earth Surface, 2016, 121, 1472-1493.	2.8	40
54	Linking Direct Measurements of Turbidity Currents to Submarine Canyon-Floor Deposits. Frontiers in Earth Science, 2019, 7, .	1.8	40

#	Article	IF	CITATIONS
55	Species-specific impact of microplastics on coral physiology. Environmental Pollution, 2021, 269, 116238.	7.5	40
56	Extreme floodâ€driven fluvial bank erosion and sediment loads: direct process measurements using integrated Mobile Laser Scanning (MLS) and hydroâ€acoustic techniques. Earth Surface Processes and Landforms, 2017, 42, 334-346.	2.5	39
57	The role of discharge variability in determining alluvial stratigraphy. Geology, 2016, 44, 3-6.	4.4	36
58	Hydrodynamic modelling of tidal-fluvial flows in a large river estuary. Estuarine, Coastal and Shelf Science, 2018, 212, 176-188.	2.1	36
59	Driven around the bend: Spatial evolution and controls on the orientation of helical bend flow in a natural submarine gravity current. Journal of Geophysical Research: Oceans, 2014, 119, 898-913.	2.6	35
60	Groundwater seepage landscapes from distant and local sources in experiments and on Mars. Earth Surface Dynamics, 2015, 3, 389-408.	2.4	35
61	The adaptation of dunes to changes in river flow. Earth-Science Reviews, 2018, 185, 1065-1087.	9.1	35
62	Large River Channel Confluences. , 2008, , 73-91.		34
63	Grain-Size Controls On the Morphology and Internal Geometry of River-Dominated Deltas. Journal of Sedimentary Research, 2015, 85, 699-714.	1.6	34
64	Superelevation and overspill control secondary flow dynamics in submarine channels. Journal of Geophysical Research: Oceans, 2013, 118, 3895-3915.	2.6	33
65	Physical modelling of water, fauna and flora: knowledge gaps, avenues for future research and infrastructural needs. Journal of Hydraulic Research/De Recherches Hydrauliques, 2014, 52, 311-325.	1.7	33
66	Sand mining far outpaces natural supply in a large alluvial river. Earth Surface Dynamics, 2021, 9, 1323-1334.	2.4	32
67	Modelling hydrodynamics in the Rio ParanÃ _i , Argentina: An evaluation and inter-comparison of reduced-complexity and physics based models applied to a large sand-bed river. Geomorphology, 2012, 169-170, 192-211.	2.6	30
68	The critical role of stratification in submarine channels: Implications for channelization and long runout of flows. Journal of Geophysical Research: Oceans, 2014, 119, 2620-2641.	2.6	30
69	A bedform phase diagram for dense granular currents. Nature Communications, 2020, 11, 2873.	12.8	30
70	Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution. Nature Communications, 2020, 11, 3129.	12.8	29
71	Reply to Discussion of Imran <i>et al.</i> on "The orientation of helical flow in curved channels―by Corney <i>et al.</i> , Sedimentology, 53, 249–257. Sedimentology, 2008, 55, 241-247.	3.1	28
72	A General Model for the Helical Structure of Geophysical Flows in Channel Bends. Geophysical Research Letters, 2017, 44, 11,932.	4.0	28

#	Article	IF	CITATIONS
73	Integrating Suspended Sediment Flux in Large Alluvial River Channels: Application of a Synoptic Rouseâ€Based Model to the Irrawaddy and Salween Rivers. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005554.	2.8	28
74	Partitioning riverine sulfate sources using oxygen and sulfur isotopes: Implications for carbon budgets of large rivers. Earth and Planetary Science Letters, 2021, 567, 116957.	4.4	27
75	Fluvio-deltaic avulsions during relative sea-level fall. Geology, 2015, 43, 719-722.	4.4	25
76	Does the canopy mixing layer model apply to highly flexible aquatic vegetation? Insights from numerical modelling. Environmental Fluid Mechanics, 2017, 17, 277-301.	1.6	25
77	Bedform migration in a mixed sand and cohesive clay intertidal environment and implications for bed material transport predictions. Geomorphology, 2018, 315, 17-32.	2.6	25
78	Controls on mud distribution and architecture along the fluvial-to-marine transition. Geology, 2018, 46, 971-974.	4.4	24
79	Quantification of bedform dynamics and bedload sediment flux in sandy braided rivers from airborne and satellite imagery. Earth Surface Processes and Landforms, 2019, 44, 953-972.	2.5	24
80	Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth and Planetary Science Letters, 2021, 562, 116845.	4.4	24
81	Monitoring Suspended Sediment Dynamics Using MBES. Journal of Hydraulic Engineering, 2010, 136, 45-49.	1.5	23
82	A new methodology for the quantitative visualization of coherent flow structures in alluvial channels using multibeam echoâ€sounding (MBES). Geophysical Research Letters, 2010, 37, .	4.0	23
83	On the Causes of Pulsing in Continuous Turbidity Currents. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2827-2843.	2.8	23
84	Self-sharpening induces jet-like structure in seafloor gravity currents. Nature Communications, 2019, 10, 1381.	12.8	22
85	Lessons learned from the monitoring of turbidity currents and guidance for future platform designs. Geological Society Special Publication, 2020, 500, 605-634.	1.3	22
86	Sediment and organic carbon transport and deposition driven by internal tides along Monterey Canyon, offshore California. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 153, 103108.	1.4	20
87	Integrating field and laboratory approaches for ripple development in mixed sand–clay–EPS. Sedimentology, 2019, 66, 2749-2768.	3.1	20
88	Pressurized groundwater outflow experiments and numerical modeling for outflow channels on Mars. Journal of Geophysical Research E: Planets, 2014, 119, 2668-2693.	3.6	19
89	Bed morphology, flow structure, and sediment transport at the outlet of Lake Huron and in the upper St. Clair River. Journal of Great Lakes Research, 2011, 37, 480-493.	1.9	18
90	Direct evidence of a high-concentration basal layer in a submarine turbidity current. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 161, 103300.	1.4	18

#	Article	IF	CITATIONS
91	Establishing sustainable sediment budgets is critical for climate-resilient mega-deltas. Environmental Research Letters, 2021, 16, 064089.	5.2	18
92	First source-to-sink monitoring shows dense head controls sediment flux and runout in turbidity currents. Science Advances, 2022, 8, eabj3220.	10.3	18
93	Amplification of downstream flood stage due to damming of fine-grained rivers. Nature Communications, 2022, 13, .	12.8	18
94	Monitoring the generation and evolution of the sediment plume behind towed fishing gears using a multibeam echosounder. ICES Journal of Marine Science, 2013, 70, 892-903.	2.5	16
95	Bedforms: views and new perspectives from the third international workshop on Marine and River Dune Dynamics (MARID3). Earth Surface Processes and Landforms, 2013, 38, 319-329.	2.5	16
96	Characteristics of direct human impacts on the rivers Karun and Dez in lowland south-west Iran and their interactions with earth surface movements. Quaternary International, 2016, 392, 315-334.	1.5	16
97	Investigation of variable aeration of monodisperse mixtures: implications for pyroclastic density currents. Bulletin of Volcanology, 2018, 80, 1.	3.0	16
98	The Impact of Nonequilibrium Flow on the Structure of Turbulence Over River Dunes. Water Resources Research, 2018, 54, 6566-6584.	4.2	16
99	Threeâ€dimensional gravity urrent flow within a subaqueous bend: Spatial evolution and force balance variations. Sedimentology, 2013, 60, 1668-1680.	3.1	15
100	Quantifying biostabilisation effects of biofilm-secreted and extracted extracellular polymeric substances (EPSs) on sandy substrate. Earth Surface Dynamics, 2018, 6, 203-215.	2.4	15
101	Interactions between sediment microbial ecology and physical dynamics drive heterogeneity in contextually similar depositional systems. Limnology and Oceanography, 2020, 65, 2403-2419.	3.1	15
102	Influence of light and temperature cycles on the expression of circadian clock genes in the mussel Mytilus edulis. Marine Environmental Research, 2020, 159, 104960.	2.5	15
103	Dynamics of salt intrusion in the Mekong Delta: results of field observations and integrated coastal–inland modelling. Earth Surface Dynamics, 2021, 9, 953-976.	2.4	15
104	Agricultural Pea Waste as a Low-Cost Pollutant Biosorbent for Methylene Blue Removal: Adsorption Kinetics, Isotherm And Thermodynamic Studies. Biomass Conversion and Biorefinery, 2024, 14, 6671-6685.	4.6	15
105	Application of a roughnessâ€length representation to parameterize energy loss in 3â€D numerical simulations of large rivers. Water Resources Research, 2012, 48, .	4.2	14
106	An evaluation of the use of a multibeam echo-sounder for observations of suspended sediment. Applied Acoustics, 2017, 126, 81-90.	3.3	12
107	Wave Ripple Development on Mixed Clay‣and Substrates: Effects of Clay Winnowing and Armoring. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2784-2801.	2.8	12
108	On determining the geometric and kinematic characteristics of coherent flow structures over a gravel bed: a new approach using combined PLIFâ€PIV. Earth Surface Processes and Landforms, 2011, 36, 279-284.	2.5	11

#	Article	IF	CITATIONS
109	Low-angle dunes in the Changjiang (Yangtze) Estuary: Flow and sediment dynamics under tidal influence. Estuarine, Coastal and Shelf Science, 2018, 205, 110-122.	2.1	11
110	Modelling impacts of tidal stream turbines on surface waves. Renewable Energy, 2019, 130, 725-734.	8.9	11
111	Knickpoints and crescentic bedform interactions in submarine channels. Sedimentology, 2021, 68, 1358-1377.	3.1	11
112	Influence of Dunes on Channel cale Flow and Sediment Transport in a Sand Bed Braided River. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005571.	2.8	10
113	Fill, flush or shuffle: How is sediment carried through submarine channels to build lobes?. Earth and Planetary Science Letters, 2022, 584, 117481.	4.4	10
114	Sediment mobility and bed armoring in the St Clair River: insights from hydrodynamic modeling. Earth Surface Processes and Landforms, 2012, 37, 957-970.	2.5	9
115	Stakeholder Expectations of Future Policy Implementation Compared to Formal Policy Trajectories: Scenarios for Agricultural Food Systems in the Mekong Delta. Sustainability, 2021, 13, 5534.	3.2	9
116	Seasonal expression patterns of clock-associated genes in the blue mussel Mytilus edulis. Chronobiology International, 2017, 34, 1300-1314.	2.0	8
117	Mid to late Holocene geomorphological and sedimentological evolution of the fluvial–tidal zone. Developments in Sedimentology, 2015, , 193-226.	0.5	7
118	Bedform genesis in bedrock substrates: Insights into formative processes from a new experimental approach and the importance of suspension-dominated abrasion. Geomorphology, 2016, 255, 26-38.	2.6	7
119	Field investigation of bedform morphodynamics under combined flow. Geomorphology, 2019, 339, 19-30.	2.6	7
120	The Influence of Threeâ€Dimensional Topography on Turbulent Flow Structures Over Dunes in Unidirectional Flows. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006121.	2.8	7
121	On the turbulence dynamics induced by a surrogate seagrass canopy. Journal of Fluid Mechanics, 2022, 934, .	3.4	7
122	Turbidity Currents Can Dictate Organic Carbon Fluxes Across Riverâ€Fed Fjords: An Example From Bute Inlet (BC, Canada). Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	7
123	Infilling Abandoned Deltaic Distributary Channels Through Landward Sediment Transport. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2019JF005254.	2.8	6
124	Investigating Fold-River Interactions for Major Rivers Using a Scheme of Remotely Sensed Characteristics of River and Fold Geomorphology. Remote Sensing, 2019, 11, 2037.	4.0	5
125	Drainage and erosion of Cambodia's great lake in the middle-late Holocene: The combined role of climatic drying, base-level fall and river capture. Quaternary Science Reviews, 2020, 236, 106265.	3.0	5
126	Sustainable rice cultivation in the deep flooded zones of the Vietnamese Mekong Delta. Vietnam Journal of Science Technology and Engineering, 2017, 59, 34-38.	0.2	5

#	Article	IF	CITATIONS
127	A pilot study of the efficacy of residuum lodges for managing sediment delivery to impoundment reservoirs. Water and Environment Journal, 2009, 23, 52-62.	2.2	4
128	Comment on "A simple model for vertical profiles of velocity and suspended sediment concentration in straight and curved submarine channels―by M. Bolla Pittaluga and J. Imran. Journal of Geophysical Research F: Earth Surface, 2014, 119, 2070-2073.	2.8	4
129	Assessing social vulnerability to riverbank erosion across the Vietnamese Mekong Delta. International Journal of River Basin Management, 2023, 21, 501-512.	2.7	4
130	Time-Domain Implementation and Analyses of Multi-Motion Modes of Floating Structures. Journal of Marine Science and Engineering, 2022, 10, 662.	2.6	4
131	Discussion of "Three-Dimensional Numerical Study of Flows in Open-Channel Junctions―by Jianchun Huang, Larry J. Weber, and Yong G. Lai. Journal of Hydraulic Engineering, 2003, 129, 822-823.	1.5	3
132	On validating predictions of plant motion in coupled biomechanical-flow models. Journal of Hydraulic Research/De Recherches Hydrauliques, 2015, 53, 808-813.	1.7	3
133	An investigation of the wake recovery of two model horizontal-axis tidal stream turbines measured in a laboratory flume with Particle Image Velocimetry. Journal of Hydro-Environment Research, 2018, 19, 179-188.	2.2	3
134	Alluvial architecture of midâ€channel fluvial–tidal barforms: The mesotidal Lower Columbia River, Oregon/Washington, USA. Sedimentology, 2020, 67, 3533-3566.	3.1	3
135	Riparian vegetation life stages control the impact of flood sequencing on braided river morphodynamics. Earth Surface Processes and Landforms, 2021, 46, 2315-2329.	2.5	3
136	MEMS-Integrated Load Cell for Measuring Pressure, Erosion, and Deposition in Dynamic Environmental Flows. IEEE Sensors Journal, 2013, 13, 492-500.	4.7	2
137	Hydrodynamics over low-angle dunes at the tidal current limit of the Changjiang Estuary. Estuarine, Coastal and Shelf Science, 2021, 253, 107298.	2.1	2
138	Microplastics interact with benthic biostabilization processes. Environmental Research Letters, 2021, 16, 124058.	5.2	2
139	Nearâ€Bed Structure of Sediment Gravity Flows Measured by Motionâ€Sensing "Boulderâ€Like―Benthic Event Detectors (BEDs) in Monterey Canyon. Journal of Geophysical Research F: Earth Surface, 2022, 127, .	2.8	2
140	The morphology of fluvialâ€ŧidal dunes: Lower Columbia River, Oregon/Washington, USA. Earth Surface Processes and Landforms, 2022, 47, 2079-2106.	2.5	2
141	SUPERIMPOSED ALLOGENIC AND BIOLOGICAL CONTROLS ON SILICICLASTIC ARCHITECTURE: AN EARLY MISSISSIPPIAN (VISEAN) EXAMPLE FROM TROPICAL LAURUSSIA. Palaios, 2022, 37, 224-250.	1.3	2
142	The combined effect of discharge and tides on low-angle dune evolution at the tidal current limit of the Changjiang Estuary. Geomorphology, 2021, 392, 107917.	2.6	1
143	The geomorphological distribution of subaqueous tufa columns in a hypersaline lake: Mono Lake, U.S.A Journal of Sedimentary Research, 2022, 92, 530-545.	1.6	1

#	Article	IF	CITATIONS
145	Reply to comment by Thomas M. Blattmann on "Carbon dioxide emissions by rock organic carbon oxidation and the next geochemical carbon budget of the Mackenzie River Basinâ€; v. 319, n. 6, p. 473–499 Numerische Mathematik, 2019, 319, 905-906.	1.4	0
146	The Coastline Evolution Model 2D (CEM2D) V1.1. Geoscientific Model Development, 2021, 14, 5507-5523.	3.6	0
147	CURVES, CONFLUENCES, AND CUTOFFS: MORPHODYNAMIC INSIGHTS FROM THE WABASH RIVER. , 2018, , .		0
148	ASSESSING BEDFORM DYNAMICS AND BEDLOAD SEDIMENT FLUX IN SANDY BRAIDED RIVERS USING AIRBORNE AND SATELLITE IMAGERY: A COMPARISON OF AERIAL, DRONE AND CUBESAT APPROACHES. , 2018, , .		0
149	EXCEPTIONAL CHANNEL AGGRADATION ON MARS AND WHAT IT MEANS FOR WATER LEVEL RISE. , 2020, , .		0
150	Geomorphological and sedimentological characteristics. , 2020, , 42-60.		0
151	UPPER SLOPE 3D MORPHOLOGIES ALONG THE LIGHTHOUSE REEF MARGIN (BELIZE): PUNCTUATED GLOBAL RECORD OF LAST DEGLACIAL SEA LEVEL FLUCTUATIONS?. , 2020, , .		0