Xiankai Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4856730/publications.pdf

Version: 2024-02-01

136950 95266 4,941 77 32 68 citations h-index g-index papers 84 84 84 8442 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PSMA-Targeting Imaging and Theranostic Agentsâ€"Current Status and Future Perspective. International Journal of Molecular Sciences, 2022, 23, 1158.	4.1	37
2	Dimensionality-Dependent Mechanical Stretch Regulation of Cell Behavior. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 17081-17092.	8.0	8
3	Comparison of BMIPP-SPECT/CT to 18FDG-PET/CT for Imaging Brown or Browning Fat in a Preclinical Model. International Journal of Molecular Sciences, 2022, 23, 4880.	4.1	O
4	Theranostic Small-Molecule Prodrug Conjugates for Targeted Delivery and Controlled Release of Toll-like Receptor 7 Agonists. International Journal of Molecular Sciences, 2022, 23, 7160.	4.1	18
5	Radiolabeling strategies and pharmacokinetic studies for metal based nanotheranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1671.	6.1	15
6	Selective depletion of radiolabeled HER2-specific antibody for contrast improvement during PET. MAbs, 2021, 13, 1976705.	5.2	2
7	Imaging of Actively Proliferating Bacterial Infections by Targeting the Bacterial Metabolic Footprint with $\langle scp \rangle d\langle scp \rangle -[5-\langle sup \rangle 11\langle sup \rangle C]$ -Glutamine. ACS Infectious Diseases, 2021, 7, 347-361.	3. 8	20
8	Copper-67 radioimmunotheranostics for simultaneous immunotherapy and immuno-SPECT. Scientific Reports, 2021, 11, 3622.	3.3	34
9	Neuropathological Effects of Chemotherapeutic Drugs. ACS Chemical Neuroscience, 2021, 12, 3038-3048.	3.5	10
10	A renal cell carcinoma tumorgraft platform to advance precision medicine. Cell Reports, 2021, 37, 110055.	6.4	16
11	Validation of SV2A-Targeted PET Imaging for Noninvasive Assessment of Neuroendocrine Differentiation in Prostate Cancer. International Journal of Molecular Sciences, 2021, 22, 13085.	4.1	10
12	PET imaging of occult tumours by temporal integration of tumour-acidosis signals from pH-sensitive 64Cu-labelled polymers. Nature Biomedical Engineering, 2020, 4, 314-324.	22.5	48
13	Functional imaging of RAS pathway targeting in malignant peripheral nerve sheath tumor cells and xenografts. Pediatric Blood and Cancer, 2020, 67, e28639.	1.5	2
14	The hexosamine biosynthesis pathway is a targetable liability in KRAS/LKB1 mutant lung cancer. Nature Metabolism, 2020, 2, 1401-1412.	11.9	82
15	Combined Tumor Environment Triggered Selfâ€Assembling Peptide Nanofibers and Inducible Multivalent Ligand Display for Cancer Cell Targeting with Enhanced Sensitivity and Specificity. Small, 2020, 16, e2002780.	10.0	13
16	Self-assembly of chimeric peptides toward molecularly defined hexamers with controlled multivalent ligand presentation. Chemical Communications, 2020, 56, 7128-7131.	4.1	4
17	Gliomas Interact with Non-glioma Brain Cells via Extracellular Vesicles. Cell Reports, 2020, 30, 2489-2500.e5.	6.4	68
18	Xenosiderophore Utilization Promotes Bacteroides thetaiotaomicron Resilience during Colitis. Cell Host and Microbe, 2020, 27, 376-388.e8.	11.0	61

#	Article	IF	CITATIONS
19	An exploratory study of 89Zr-DFO-Atezolizumab ImmunoPET/CT in patients with locally advanced or metastatic renal cell carcinoma Journal of Clinical Oncology, 2020, 38, TPS759-TPS759.	1.6	1
20	Fifty Years of Radiopharmaceuticals. Journal of Nuclear Medicine Technology, 2020, 48, 34S-39S.	0.8	4
21	Tumor Uptake of Triazine Dendrimers Decorated with Four, Sixteen, and Sixty-Four PSMA-Targeted Ligands: Passive versus Active Tumor Targeting. Biomolecules, 2019, 9, 421.	4.0	15
22	PD-L1 detection using 89Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. , 2019, 7, 144.		53
23	An Adipose Tissue Atlas: An Image-Guided Identification of Human-like BAT and Beige Depots in Rodents. Cell Metabolism, 2018, 27, 252-262.e3.	16.2	174
24	PD-L1 on host cells is essential for PD-L1 blockade–mediated tumor regression. Journal of Clinical Investigation, 2018, 128, 580-588.	8.2	388
25	Bombesin functionalized ⁶⁴ Cu-copper sulfide nanoparticles for targeted imaging of orthotopic prostate cancer. Nanomedicine, 2018, 13, 1695-1705.	3.3	23
26	Interactions of Renalâ€Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. Angewandte Chemie - International Edition, 2017, 56, 4314-4319.	13.8	51
27	Interactions of Renalâ€Clearable Gold Nanoparticles with Tumor Microenvironments: Vasculature and Acidity Effects. Angewandte Chemie, 2017, 129, 4378-4383.	2.0	16
28	Control of cerebral ischemia with magnetic nanoparticles. Nature Methods, 2017, 14, 160-166.	19.0	43
29	A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nature Biomedical Engineering, 2017, 1, .	22.5	163
30	The Warburg effect and glucose-derived cancer theranostics. Drug Discovery Today, 2017, 22, 1637-1653.	6.4	111
31	Feasibility study of direct beta particle detection using gas electron multiplier. , 2016, , .		0
32	Theranostic Nanoseeds for Efficacious Internal Radiation Therapy of Unresectable Solid Tumors. Scientific Reports, 2016, 6, 20614.	3.3	59
33	Targeting renal cell carcinoma with a HIF-2 antagonist. Nature, 2016, 539, 112-117.	27.8	521
34	Design of a Small-Molecule Drug Conjugate for Prostate Cancer Targeted Theranostics. Bioconjugate Chemistry, 2016, 27, 1681-1689.	3.6	39
35	Spatial denoising methods for low count functional images. , 2015, , .		0
36	[⁶⁸ Ga]â€HPâ€DO3Aâ€nitroimidazole: a promising agent for PET detection of tumor hypoxia. Contrast Media and Molecular Imaging, 2015, 10, 465-472.	0.8	17

#	Article	IF	CITATIONS
37	Comparative Evaluation of Two Venous Sampling Techniques for the Assessment of Pancreatic Insulin and Zinc Release upon Glucose Challenge. Journal of Diabetes Research, 2015, 2015, 1-7.	2.3	O
38	C-terminal variable AGES domain of Thymosin \hat{l}^24 : the molecule's primary contribution in support of post-ischemic cardiac function and repair. Journal of Molecular and Cellular Cardiology, 2015, 87, 113-125.	1.9	21
39	Renal Clearance and Degradation of Glutathione-Coated Copper Nanoparticles. Bioconjugate Chemistry, 2015, 26, 511-519.	3.6	78
40	Molecular Platform for Design and Synthesis of Targeted Dual-Modality Imaging Probes. Bioconjugate Chemistry, 2015, 26, 549-558.	3.6	18
41	A comparative study of trans- and cis-isomers of a bone-seeking agent, DO2A2P. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 571-574.	2.2	4
42	Click-Chemistry Strategy for Labeling Antibodies with Copper-64 via a Cross-Bridged Tetraazamacrocyclic Chelator Scaffold. Bioconjugate Chemistry, 2015, 26, 782-789.	3.6	18
43	Tumor-specific targeting by Bavituximab, a phosphatidylserine-targeting monoclonal antibody with vascular targeting and immune modulating properties, in lung cancer xenografts. American Journal of Nuclear Medicine and Molecular Imaging, 2015, 5, 493-503.	1.0	12
44	Dimerization of a Phage-Display Selected Peptide for Imaging of \hat{l}_{\pm} _{\hat{l}^{2}₆- Integrin: Two Approaches to the Multivalent Effect. Theranostics, 2014, 4, 745-760.}	10.0	32
45	Derivatization of $(\hat{A}\pm)$ dihydrotetrabenazine for copper-64 labeling towards long-lived radiotracers for PET imaging of the vesicular monoamine transporter 2. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5663-5665.	2.2	8
46	Enantiopure bifunctional chelators for copper radiopharmaceuticals – Does chirality matter in radiotracer design?. European Journal of Medicinal Chemistry, 2014, 80, 308-315.	5 . 5	11
47	Glutathione-Coated Luminescent Gold Nanoparticles: A Surface Ligand for Minimizing Serum Protein Adsorption. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11829-11833.	8.0	47
48	Lin28b Is Sufficient to Drive Liver Cancer and Necessary for Its Maintenance in Murine Models. Cancer Cell, 2014, 26, 248-261.	16.8	176
49	Use of Fc-Engineered Antibodies as Clearing Agents to Increase Contrast During PET. Journal of Nuclear Medicine, 2014, 55, 1204-1207.	5.0	23
50	Dendrimer Nanoscaffolds for Potential Theranostics of Prostate Cancer with a Focus on Radiochemistry. Molecular Pharmaceutics, 2013, 10, 793-812.	4.6	98
51	A Multivalent Approach of Imaging Probe Design To Overcome an Endogenous Anion Binding Competition for Noninvasive Assessment of Prostate Specific Membrane Antigen. Molecular Pharmaceutics, 2013, 10, 2975-2985.	4.6	11
52	Acceleration of the acquisition of imaging probes using spatiotemporal processing. , 2013, , .		3
53	Highly Specific PET Imaging of Prostate Tumors in Mice with an Iodine-124-Labeled Antibody Fragment That Targets Phosphatidylserine. PLoS ONE, 2013, 8, e84864.	2.5	23
54	Serial Non-Invasive Assessment of Antibody Induced Nephritis in Mice Using Positron Emission Tomography. PLoS ONE, 2013, 8, e57418.	2.5	11

#	Article	IF	CITATIONS
55	Nearâ€Infrared Emitting Radioactive Gold Nanoparticles with Molecular Pharmacokinetics. Angewandte Chemie - International Edition, 2012, 51, 10118-10122.	13.8	184
56	Analysis of oligo-arginine cell-permeable peptides uptake by prostate cells. Amino Acids, 2012, 42, 1253-1260.	2.7	19
57	Trapping Iron Oxide into Hollow Gold Nanoparticles. Nanoscale Research Letters, 2011, 6, 43.	5.7	15
58	Multivalent Bifunctional Chelator Scaffolds for Gallium-68 Based Positron Emission Tomography Imaging Probe Design: Signal Amplification via Multivalency. Bioconjugate Chemistry, 2011, 22, 1650-1662.	3.6	44
59	A cell permeable peptide analog as a potential-specific PET imaging probe for prostate cancer detection. Amino Acids, 2011, 41, 1093-1101.	2.7	21
60	Luminescent Gold Nanoparticles with Efficient Renal Clearance. Angewandte Chemie - International Edition, 2011, 50, 3168-3172.	13.8	401
61	A New F-18 Labeled PET Agent For Imaging Alzheimer's Plaques. , 2011, , .		1
62	Recent Advances in Copper Radiopharmaceuticals. Current Radiopharmaceuticals, 2011, 4, 109-121.	0.8	25
63	Peptoid-based PET imaging of vascular endothelial growth factor receptor (VEGFR) expression. American Journal of Nuclear Medicine and Molecular Imaging, 2011, 1, 65-75.	1.0	20
64	PET with Non-Standard Nuclides. Current Topics in Medicinal Chemistry, 2010, 10, 1096-1112.	2.1	21
65	Attention-Deficit/Hyperactivity Phenotype in Mice Lacking the Cyclin-Dependent Kinase 5 Cofactor p35. Biological Psychiatry, 2010, 68, 1163-1171.	1.3	56
66	Imparting Multivalency to a Bifunctional Chelator: A Scaffold Design for Targeted PET Imaging Probes. Angewandte Chemie - International Edition, 2009, 48, 7346-7349.	13.8	65
67	Synthesis and evaluation of lanthanide ion DOTA–tetraamide complexes bearing peripheral hydroxyl groups. Journal of Biological Inorganic Chemistry, 2009, 14, 421-438.	2.6	15
68	An osteoclast-targeting agent for imaging and therapy of bone metastasis. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4789-4793.	2.2	19
69	Synthesis, Potentiometric, Kinetic, and NMR Studies of 1,4,7,10-Tetraazacyclododecane-1,7-bis(acetic) Tj ETQq1 1 Lanthanide(III) Ions. Inorganic Chemistry, 2008, 47, 3851-3862.	l 0.78431 4.0	4 rgBT /Ove 65
70	The Effect of the Amide Substituent on the Biodistribution and Tolerance of Lanthanide(III) DOTA-Tetraamide Derivatives. Investigative Radiology, 2008, 43, 861-870.	6.2	26
71	MicroPET Imaging of MCF-7 Tumors in Mice via unr mRNA-Targeted Peptide Nucleic Acids. Bioconjugate Chemistry, 2005, 16, 294-305.	3.6	50
72	An Assessment of the Effects of Shell Cross-Linked Nanoparticle Size, Core Composition, and Surface PEGylation on in Vivo Biodistribution. Biomacromolecules, 2005, 6, 2541-2554.	5.4	215

XIANKAI SUN

#	Article	IF	CITATION
73	Production and Applications of Copper-64 Radiopharmaceuticals. Methods in Enzymology, 2004, 386, 237-261.	1.0	49
74	Comparative in Vivo Stability of Copper-64-Labeled Cross-Bridged and Conventional Tetraazamacrocyclic Complexes. Journal of Medicinal Chemistry, 2004, 47, 1465-1474.	6.4	449
75	In vivo evaluation of copper-64-labeled monooxo-tetraazamacrocyclic ligands. Nuclear Medicine and Biology, 2004, 31, 1051-1059.	0.6	23
76	In vivo behavior of copper-64-labeled methanephosphonate tetraaza macrocyclic ligands. Journal of Biological Inorganic Chemistry, 2003, 8, 217-225.	2.6	65
77	Radiolabeling and In Vivo Behavior of Copper-64-Labeled Cross-Bridged Cyclam Ligands. Journal of Medicinal Chemistry, 2002, 45, 469-477.	6.4	226