Yue-Qin Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4856532/publications.pdf

Version: 2024-02-01

60 9,632 38 60 papers citations h-index g-index

61 61 61 19817

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biology, 2014, 15, 512.	8.8	475
3	Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nature Biotechnology, 2013, 31, 848-852.	17.5	401
4	LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. Journal of Hematology and Oncology, 2016, 9, 117.	17.0	213
5	Expression analysis of phytohormoneâ€regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Letters, 2009, 583, 723-728.	2.8	196
6	Noncoding RNAs in cancer therapy resistance and targeted drug development. Journal of Hematology and Oncology, 2019, 12, 55.	17.0	193
7	The IncRNA HOTAIRM1 regulates the degradation of PML-RARA oncoprotein and myeloid cell differentiation by enhancing the autophagy pathway. Cell Death and Differentiation, 2017, 24, 212-224.	11.2	180
8	MiR397b regulates both lignin content and seed number in Arabidopsis via modulating a laccase involved in lignin biosynthesis. Plant Biotechnology Journal, 2014, 12, 1132-1142.	8.3	179
9	MicroRNA Patterns Associated with Clinical Prognostic Parameters and CNS Relapse Prediction in Pediatric Acute Leukemia. PLoS ONE, 2009, 4, e7826.	2.5	174
10	Downâ€regulated miRâ€331–5p and miRâ€27a are associated with chemotherapy resistance and relapse in leukaemia. Journal of Cellular and Molecular Medicine, 2011, 15, 2164-2175.	3.6	161
11	Long noncoding RNAs: New regulators in plant development. Biochemical and Biophysical Research Communications, 2013, 436, 111-114.	2.1	160
12	Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Letters, 2006, 580, 5111-5116.	2.8	147
13	circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood, 2019, 134, 1533-1546.	1.4	142
14	Insights into the mechanism of plant development: Interactions of miRNAs pathway with phytohormone response. Biochemical and Biophysical Research Communications, 2009, 384, 1-5.	2.1	127
15	Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus. RNA Biology, 2011, 8, 538-547.	3.1	125
16	MiR408 Regulates Grain Yield and Photosynthesis via a Phytocyanin Protein. Plant Physiology, 2017, 175, 1175-1185.	4.8	121
17	LncRNA ANRIL regulates AML development through modulating the glucose metabolism pathway of AdipoR1/AMPK/SIRT1. Molecular Cancer, 2018, 17, 127.	19.2	112
18	N6-methyladenosine methyltransferases: functions, regulation, and clinical potential. Journal of Hematology and Oncology, 2021, 14, 117.	17.0	105

#	Article	IF	CITATIONS
19	The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice. PLoS Genetics, 2019, 15, e1008120.	3.5	103
20	Circulating miRNAs in cancer: from detection to therapy. Journal of Hematology and Oncology, 2014, 7, 86.	17.0	102
21	Recovery of novel bacterial diversity from mangrove sediment. Marine Biology, 2007, 150, 739-747.	1.5	97
22	Genome-wide Long Non-coding RNA Analysis Identified Circulating LncRNAs as Novel Non-invasive Diagnostic Biomarkers for Gynecological Disease. Scientific Reports, 2016, 6, 23343.	3.3	93
23	Transcriptional landscape of pathogenâ€responsive lnc <scp>RNA</scp> s in rice unveils the role of <scp>ALEX</scp> 1 in jasmonate pathway and disease resistance. Plant Biotechnology Journal, 2020, 18, 679-690.	8.3	87
24	miR-133b, a muscle-specific microRNA, is a novel prognostic marker that participates in the progression of human colorectal cancer via regulation of CXCR4 expression. Molecular Cancer, 2013, 12, 164.	19.2	72
25	Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. European Journal of Phycology, 2002, 37, 77-92.	2.0	68
26	miR-125b, a Target of CDX2, Regulates Cell Differentiation through Repression of the Core Binding Factor in Hematopoietic Malignancies. Journal of Biological Chemistry, 2011, 286, 38253-38263.	3.4	63
27	Principles and innovative technologies for decrypting noncoding RNAs: from discovery and functional prediction to clinical application. Journal of Hematology and Oncology, 2020, 13, 109.	17.0	60
28	OsmiR528 regulates rice-pollen intine formation by targeting an uclacyanin to influence flavonoid metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 727-732.	7.1	58
29	MiR-124 contributes to glucocorticoid resistance in acute lymphoblastic leukemia by promoting proliferation, inhibiting apoptosis and targeting the glucocorticoid receptor. Journal of Steroid Biochemistry and Molecular Biology, 2017, 172, 62-68.	2.5	54
30	MIR-708 promotes phagocytosis to eradicate T-ALL cells by targeting CD47. Molecular Cancer, 2018, 17, 12.	19.2	53
31	circRNA circAF4 functions as an oncogene to regulate MLL-AF4 fusion protein expression and inhibit MLL leukemia progression. Journal of Hematology and Oncology, 2019, 12, 103.	17.0	53
32	Reproductive phasiRNAs regulate reprogramming of gene expression and meiotic progression in rice. Nature Communications, 2020, 11, 6031.	12.8	53
33	Differentially expressed microRNAs in the serum of cervical squamous cell carcinoma patients before and after surgery. Journal of Hematology and Oncology, 2014, 7, 6.	17.0	51
34	A distinct set of long non-coding RNAs in childhood MLL-rearranged acute lymphoblastic leukemia: biology and epigenetic target. Human Molecular Genetics, 2014, 23, 3278-3288.	2.9	49
35	The IncRNA LAMP5-AS1 drives leukemia cell stemness by directly modulating DOT1L methyltransferase activity in MLL leukemia. Journal of Hematology and Oncology, 2020, 13, 78.	17.0	47
36	SINAT E3 Ubiquitin Ligases Mediate FREE1 and VPS23A Degradation to Modulate Abscisic Acid Signaling. Plant Cell, 2020, 32, 3290-3310.	6.6	46

#	Article	IF	CITATIONS
37	<i>MIR125B1</i> represses the degradation of the PML-RARA oncoprotein by an autophagy-lysosomal pathway in acute promyelocytic leukemia. Autophagy, 2014, 10, 1726-1737.	9.1	44
38	Small RNAs in regulating temperature stress response in plants. Journal of Integrative Plant Biology, 2017, 59, 774-791.	8.5	43
39	Genome-Wide Analysis of Small RNA and Novel MicroRNA Discovery in Human Acute Lymphoblastic Leukemia Based on Extensive Sequencing Approach. PLoS ONE, 2009, 4, e6849.	2.5	42
40	The parent-of-origin lncRNA MISSEN regulates rice endosperm development. Nature Communications, 2021, 12, 6525.	12.8	40
41	Potential Pathological and Functional Links Between Long Noncoding RNAs and Hematopoiesis. Science Signaling, 2013, 6, re5.	3.6	33
42	Activation of the Lysosome-Associated Membrane Protein LAMP5 by DOT1L Serves as a Bodyguard for MLL Fusion Oncoproteins to Evade Degradation in Leukemia. Clinical Cancer Research, 2019, 25, 2795-2808.	7.0	33
43	Genetic variability in Gymnodiniaceae ITS regions: implications for species identification and phylogenetic analysis. Marine Biology, 2004, 144, 215-224.	1.5	31
44	miRNAs and IncRNAs in reproductive development. Plant Science, 2015, 238, 46-52.	3.6	31
45	Circular RNAs roll into the regulatory network of plants. Biochemical and Biophysical Research Communications, 2017, 488, 382-386.	2.1	29
46	A Natural Variant of miR397 Mediates a Feedback Loop in Circadian Rhythm. Plant Physiology, 2020, 182, 204-214.	4.8	29
47	Global identification and characterization of lncRNAs that control inflammation in malignant cholangiocytes. BMC Genomics, 2018, 19, 735.	2.8	22
48	Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies. Cell Death and Disease, 2020, 11 , 566 .	6.3	21
49	Chromatin-associated orphan snoRNA regulates DNA damage-mediated differentiation via a non-canonical complex. Cell Reports, 2022, 38, 110421.	6.4	19
50	Rice UCL8, a plantacyanin gene targeted by miR408, regulates fertility by controlling pollen tube germination and growth. Rice, $2018,11,60.$	4.0	18
51	Cis-acting Inc-eRNA SEELA directly binds histone H4 to promote histone recognition and leukemia progression. Genome Biology, 2020, 21, 269.	8.8	17
52	Genome-wide analysis and functional annotation of chromatin-enriched noncoding RNAs in rice during somatic cell regeneration. Genome Biology, 2022, 23, 28.	8.8	13
53	Ubiquitin-dependent Argonauteprotein MEL1 degradation is essential for rice sporogenesis and phasiRNA target regulation. Plant Cell, 2021, 33, 2685-2700.	6.6	12
54	Non-coding RNAs in cancers with chromosomal rearrangements: the signatures, causes, functions and implications. Journal of Molecular Cell Biology, 2019, 11, 886-898.	3.3	10

Yue-Qin Chen

#	Article	IF	CITATIONS
55	Molecular phylogeny of the entomopathogenic fungi of the genus Cordyceps (Ascomycota:) Tj ETQq1 1 0.78431 435-444.	4 rgBT /Ov 3.1	verlock 10 Tf 8
56	Genome-Wide Analysis Identified a Set of Conserved IncRNAs Associated with Domestication-Related Traits in Rice. International Journal of Molecular Sciences, 2021, 22, 4742.	4.1	8
57	The genetic diversity and molecular phylogeny of Radiolaria in South China Sea. Palaeoworld, 2011, 20, 252-256.	1.1	3
58	A CRISPR/CAS9â€based strategy targets the personalized chimeric neosequence in fusionâ€driven cancer genome for precision medicine. Clinical and Translational Medicine, 2021, 11, e355.	4.0	2
59	Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiology Letters, 2002, 214, 235-240.	1.8	1
60	Identification and Characterization of. Methods in Molecular Biology, 2021, 2362, 1-19.	0.9	0