Valeria Tafintseva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/485653/publications.pdf Version: 2024-02-01

VALEDIA TAEINTSEVA

#	Article	IF	CITATIONS
1	Biochemical profiling, prediction of total lipid content and fatty acid profile in oleaginous yeasts by FTIR spectroscopy. Biotechnology for Biofuels, 2019, 12, 140.	6.2	70
2	Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microbial Cell Factories, 2017, 16, 101.	4.0	62
3	Analysis of Allergenic Pollen by FTIR Microspectroscopy. Analytical Chemistry, 2016, 88, 803-811.	6.5	47
4	Microcultivation and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. PLoS ONE, 2020, 15, e0234870.	2.5	42
5	Unravelling genetic variation underlying de novo-synthesis of bovine milk fatty acids. Scientific Reports, 2018, 8, 2179.	3.3	34
6	Merging FT-IR and NGS for simultaneous phenotypic and genotypic identification of pathogenic Candida species. PLoS ONE, 2017, 12, e0188104.	2.5	31
7	The influence of phosphorus source and the nature of nitrogen substrate on the biomass production and lipid accumulation in oleaginous Mucoromycota fungi. Applied Microbiology and Biotechnology, 2020, 104, 8065-8076.	3.6	31
8	A highâ€ŧhroughput FTIR spectroscopy approach to assess adaptive variation in the chemical composition of pollen. Ecology and Evolution, 2017, 7, 10839-10849.	1.9	29
9	Extended multiplicative signal correction for FTIR spectral quality test and preâ€processing of infrared imaging data. Journal of Biophotonics, 2020, 13, e201960112.	2.3	21
10	Metal and Phosphate Ions Show Remarkable Influence on the Biomass Production and Lipid Accumulation in Oleaginous Mucor circinelloides. Journal of Fungi (Basel, Switzerland), 2020, 6, 260.	3.5	19
11	Combining Chemical Information From Grass Pollen in Multimodal Characterization. Frontiers in Plant Science, 2019, 10, 1788.	3.6	18
12	Hierarchical classification of microorganisms based on highâ€dimensional phenotypic data. Journal of Biophotonics, 2018, 11, e201700047.	2.3	16
13	Obesity-Related Metabolome and Gut Microbiota Profiles of Juvenile Göttingen Minipigs—Long-Term Intake of Fructose and Resistant Starch. Metabolites, 2020, 10, 456.	2.9	16
14	Discrimination of grass pollen of different species by FTIR spectroscopy of individual pollen grains. Analytical and Bioanalytical Chemistry, 2020, 412, 6459-6474.	3.7	16
15	Deep convolutional neural network recovers pure absorbance spectra from highly scatterâ€distorted spectra of cells. Journal of Biophotonics, 2020, 13, e202000204.	2.3	14
16	Assessment of Biotechnologically Important Filamentous Fungal Biomass by Fourier Transform Raman Spectroscopy. International Journal of Molecular Sciences, 2021, 22, 6710.	4.1	13
17	Global structure of sloppiness in a nonlinear model. Journal of Chemometrics, 2014, 28, 645-655.	1.3	12
18	Correcting replicate variation in spectroscopic data by machine learning and model-based pre-processing. Chemometrics and Intelligent Laboratory Systems, 2021, 215, 104350.	3.5	12

VALERIA TAFINTSEVA

#	Article	IF	CITATIONS
19	Infrared Fiber-Optic Spectroscopy Detects Bovine Articular Cartilage Degeneration. Cartilage, 2021, 13, 285S-294S.	2.7	10
20	Preprocessing Strategies for Sparse Infrared Spectroscopy: A Case Study on Cartilage Diagnostics. Molecules, 2022, 27, 873.	3.8	9
21	Grayscale representation of infrared microscopy images by extended multiplicative signal correction for registration with histological images. Journal of Biophotonics, 2020, 13, e201960223.	2.3	8
22	A robust metabolomics approach for the evaluation of human embryos from <i>in vitro</i> fertilization. Analyst, The, 2021, 146, 6156-6169.	3.5	7
23	PLS-Based Multivariate Metamodeling of Dynamic Systems. Springer Proceedings in Mathematics and Statistics, 2013, , 3-30.	0.2	7
24	Temperature- and Nutrients-Induced Phenotypic Changes of Antarctic Green Snow Bacteria Probed by High-Throughput FTIR Spectroscopy. Biology, 2022, 11, 890.	2.8	7
25	The Use of Constituent Spectra and Weighting in Extended Multiplicative Signal Correction in Infrared Spectroscopy. Molecules, 2022, 27, 1900.	3.8	6
26	Model-Based Pre-Processing in Vibrational Spectroscopy. , 2020, , 83-100.		5
27	Genetic variants associated with two major bovine milk fatty acids offer opportunities to breed for altered milk fat composition. Genetics Selection Evolution, 2022, 54, .	3.0	5
28	Fourier transform infrared spectroscopy of milk samples as a tool to estimate energy balance, energy- and dry matter intake in lactating dairy cows. Journal of Dairy Research, 2020, 87, 436-443.	1.4	4
29	Polynomial representations of piecewise-linear differential equations arising from gene regulatory networks. Nonlinear Analysis: Real World Applications, 2013, 14, 1732-1754.	1.7	3
30	Exploring Dry-Film FTIR Spectroscopy to Characterize Milk Composition and Subclinical Ketosis throughout a Cow's Lactation. Foods, 2021, 10, 2033.	4.3	3
31	Convergence Properties of Piecewise Power Approximations. Applied Mathematics, 2016, 07, 1440-1445.	0.4	1
32	Preclassification of Broadband and Sparse Infrared Data by Multiplicative Signal Correction Approach. Molecules, 2022, 27, 2298.	3.8	1
33	Power-Law Formalism in Gene Regulatory Networks. , 2011, , .		0
34	Piecewise synergetic systems and applications in biochemical systems theory. Georgian Mathematical Journal, 2017, 24, 135-148.	0.6	0
35	Title is missing!. , 2020, 15, e0234870.		0
36	Title is missing!. , 2020, 15, e0234870.		0

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 15, e0234870.		0
38	Title is missing!. , 2020, 15, e0234870.		0

Title is missing!. , 2020, 15, e0234870. 38