
Ricardo Franco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4856111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction between gold nanoparticles and blood proteins to define disease states. Annals of Medicine, 2024, 51, 37-37.	3.8	1
2	Fe3O4-Au Core-Shell Nanoparticles as a Multimodal Platform for In Vivo Imaging and Focused Photothermal Therapy. Pharmaceutics, 2021, 13, 416.	4.5	34
3	Reusable and highly sensitive SERS immunoassay utilizing gold nanostars and a cellulose hydrogel-based platform. Journal of Materials Chemistry B, 2021, 9, 7516-7529.	5.8	18
4	Design and Simple Assembly of Gold Nanostar Bioconjugates for Surface-Enhanced Raman Spectroscopy Immunoassays. Nanomaterials, 2019, 9, 1561.	4.1	19
5	Starâ€Shaped Gold Nanoparticles as Friendly Interfaces for Protein Electrochemistry: the Case Study of Cytochromeâ€ <i>c</i> . ChemElectroChem, 2019, 6, 4696-4703.	3.4	9
6	Expedite SERS Fingerprinting of Portuguese White Wines Using Plasmonic Silver Nanostars. Frontiers in Chemistry, 2019, 7, 368.	3.6	10
7	Synthesis and Characterization of Elongated-Shaped Silver Nanoparticles as a Biocompatible Anisotropic SERS Probe for Intracellular Imaging: Theoretical Modeling and Experimental Verification. Nanomaterials, 2019, 9, 256.	4.1	27
8	Development of a Gold Nanoparticle-Based Lateral-Flow Immunoassay for Pneumocystis Pneumonia Serological Diagnosis at Point-of-Care. Frontiers in Microbiology, 2019, 10, 2917.	3.5	29
9	Measurement of adsorption constants of laccase on gold nanoparticles to evaluate the enhancement in enzyme activity of adsorbed laccase. Physical Chemistry Chemical Physics, 2018, 20, 16761-16769.	2.8	11
10	The binding of free and copper-complexed fluoroquinolones to OmpF porins: an experimental and molecular docking study. RSC Advances, 2017, 7, 10009-10019.	3.6	14
11	Office paper decorated with silver nanostars - an alternative cost effective platform for trace analyte detection by SERS. Scientific Reports, 2017, 7, 2480.	3.3	86
12	Direct growth of plasmonic nanorod forests on paper substrates for low-cost flexible 3D SERS platforms. Flexible and Printed Electronics, 2017, 2, 014001.	2.7	46
13	Unravelling Malaria Antigen Binding to Antibodyâ€Gold Nanoparticle Conjugates. Particle and Particle Systems Characterization, 2016, 33, 906-915.	2.3	10
14	Gold Nanoparticles for DNA/RNA-Based Diagnostics. , 2016, , 1339-1370.		4
15	Characterization and optimization of the haemozoin-like crystal (HLC) assay to determine Hz inhibiting effects of anti-malarial compounds. Malaria Journal, 2015, 14, 403.	2.3	9
16	Gold Nanoparticles for DNA/RNA-Based Diagnostics. , 2015, , 1-25.		1
17	Highly efficient nanoplasmonic SERS on cardboard packaging substrates. Nanotechnology, 2014, 25, 415202.	2.6	54
18	Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection. RSC Advances. 2014. 4. 3690-3698.	3.6	86

RICARDO FRANCO

#	Article	IF	CITATIONS
19	Gold Nanoparticles as (Bio)Chemical Sensors. Comprehensive Analytical Chemistry, 2014, 66, 529-567.	1.3	20
20	Localized surface plasmon resonance (LSPR) biosensing using gold nanotriangles: detection of DNA hybridization events at room temperature. Analyst, The, 2014, 139, 4964-4973.	3.5	65
21	Correction to Use of Gold Nanoparticles as Additives in Protein Crystallization. Crystal Growth and Design, 2014, 14, 888-888.	3.0	Ο
22	Use of Gold Nanoparticles as Additives in Protein Crystallization. Crystal Growth and Design, 2014, 14, 222-227.	3.0	22
23	ZnO nanorods as immobilization layers for interdigitated capacitive immunosensors. Sensors and Actuators B: Chemical, 2014, 204, 211-217.	7.8	22
24	Sintering of nanoscale silver coated textiles, a new approach to attain conductive fabrics for electromagnetic shielding. Materials Chemistry and Physics, 2014, 147, 815-822.	4.0	32
25	Interdigitated Capacitive Immunosensors With PVDF Immobilization Layers. IEEE Sensors Journal, 2014, 14, 1260-1265.	4.7	11
26	Charge Effects on the Structure and Composition of Porphyrin Binary Ionic Solids: ZnTPPS/SnTMePyP Nanomaterials. Chemistry of Materials, 2013, 25, 441-447.	6.7	22
27	Gold Nanoparticles and Proteins, Interaction. , 2013, , 908-915.		6
28	Controlled adsorption of cytochrome c to nanostructured gold surfaces. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	9
29	Gold nanoparticles in the clinical laboratory: principles of preparation and applications. Clinical Chemistry and Laboratory Medicine, 2012, 50, 193-209.	2.3	72
30	Incorporation of silver nanoparticles on textile materials by an aqueous procedure. Materials Letters, 2012, 75, 200-203.	2.6	40
31	Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Analytical and Bioanalytical Chemistry, 2012, 402, 1019-1027.	3.7	69
32	Nickel(II) Chelatase Variants Directly Evolved from Murine Ferrochelatase: Porphyrin Distortion and Kinetic Mechanism. Biochemistry, 2011, 50, 1535-1544.	2.5	15
33	Nanoparticles in Molecular Diagnostics. Progress in Molecular Biology and Translational Science, 2011, 104, 427-488.	1.7	47
34	Pathogen-mimetic stealth nanocarriers for drug delivery: a future possibility. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 730-743.	3.3	50
35	Bionanoconjugates of tyrosinase and peptide-derivatised gold nanoparticles for biosensing of phenolic compounds. Journal of Nanoparticle Research, 2011, 13, 1101-1113.	1.9	19
36	Resonance Raman spectroscopic examination of ferrochelatase-induced porphyrin distortion. Journal of Porphyrins and Phthalocyanines, 2011, 15, 357-363.	0.8	13

RICARDO FRANCO

#	Article	IF	CITATIONS
37	Structure of the interface between water and self-assembled monolayers of neutral, anionic and cationic alkane thiols. Computational and Theoretical Chemistry, 2010, 946, 83-87.	1.5	10
38	Optimizing Au-nanoprobes for specific sequence discrimination. Colloids and Surfaces B: Biointerfaces, 2010, 77, 122-124.	5.0	28
39	Molecular organization in self-assembled binary porphyrin nanotubes revealed by resonance Raman spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 4072.	2.8	38
40	Gold–silver-alloy nanoprobes for one-pot multiplex DNA detection. Nanotechnology, 2010, 21, 255101.	2.6	34
41	Molecular dynamics simulations of mouse ferrochelatase variants: what distorts and orientates the porphyrin?. Journal of Biological Inorganic Chemistry, 2009, 14, 1119-1128.	2.6	4
42	Green photocatalytic synthesis of stable Au and Ag nanoparticles. Green Chemistry, 2009, 11, 1889.	9.0	69
43	Gold nanoparticles for the development of clinical diagnosis methods. Analytical and Bioanalytical Chemistry, 2008, 391, 943-950.	3.7	448
44	Probing Surface Properties of Cytochrome <i>c</i> at Au Bionanoconjugates. Journal of Physical Chemistry C, 2008, 112, 16340-16347.	3.1	32
45	Identification of unamplified genomic DNA sequences using gold nanoparticle probes and a novel thin film photodetector. Journal of Non-Crystalline Solids, 2008, 354, 2580-2584.	3.1	8
46	Imaging Gold Nanoparticles for DNA Sequence Recognition in Biomedical Applications. IEEE Transactions on Nanobioscience, 2007, 6, 282-288.	3.3	21
47	Amorphous/nanocrystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes. Applied Physics Letters, 2007, 90, 023903.	3.3	42
48	Novel Optoelectronic Platform using an Amorphous/Nanocrystalline Silicon Biosensor for the Specific Identification of Unamplified Nucleic Acid Sequences Based on Gold Nanoparticle Probes. , 2007, , .		2
49	Nanodiagnostics: fast colorimetric method for single nucleotide polymorphism/mutation detection. IET Nanobiotechnology, 2007, 1, 53.	3.8	84
50	Spectroelectrochemistry of Type II Cytochromec3on a Glycosylated Self-Assembled Monolayer. Langmuir, 2006, 22, 9809-9811.	3.5	5
51	Gold-Nanoparticle-Probe–Based Assay for Rapid and Direct Detection of Mycobacterium tuberculosis DNA in Clinical Samples. Clinical Chemistry, 2006, 52, 1433-1434.	3.2	187
52	The Conserved Active-Site Loop Residues of Ferrochelatase Induce Porphyrin Conformational Changes Necessary for Catalysisâ€. Biochemistry, 2006, 45, 2904-2912.	2.5	30
53	Resonance Raman fingerprinting of multiheme cytochromes from the cytochrome c 3 family. Journal of Biological Inorganic Chemistry, 2006, 11, 217-224.	2.6	6
54	Chelatases: distort to select?. Trends in Biochemical Sciences, 2006, 31, 135-142.	7.5	94

RICARDO FRANCO

#	Article	IF	CITATIONS
55	Porphyrin-substrate binding to murine ferrochelatase: effect on the thermal stability of the enzyme. Biochemical Journal, 2005, 386, 599-605.	3.7	11
56	Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles. Journal of Biotechnology, 2005, 119, 111-117.	3.8	103
57	Elucidating interactions of ionic liquids with polymer films using confocal Raman spectroscopy. Chemical Communications, 2005, , 2594.	4.1	13
58	Binding of Protoporphyrin IX and Metal Derivatives to the Active Site of Wild-Type Mouse Ferrochelatase at Low Porphyrin-to-Protein Ratiosâ€. Biochemistry, 2002, 41, 8253-8262.	2.5	33
59	Unraveling the Substrateâ^'Metal Binding Site of Ferrochelatase:  An X-ray Absorption Spectroscopic Study. Biochemistry, 2002, 41, 4809-4818.	2.5	47
60	Substitution of murine ferrochelatase glutamate-287 with glutamine or alanine leads to porphyrin substrate-bound variants. Biochemical Journal, 2001, 356, 217-222.	3.7	18
61	Substitution of murine ferrochelatase glutamate-287 with glutamine or alanine leads to porphyrin substrate-bound variants. Biochemical Journal, 2001, 356, 217.	3.7	14
62	Using Cytochromec3To Make Selenium Nanowires. Chemistry of Materials, 2000, 12, 1510-1512.	6.7	94
63	Porphyrin Interactions with Wild-type and Mutant Mouse Ferrochelatase. Biochemistry, 2000, 39, 2517-2529.	2.5	64
64	Isolation and Characterisation of a Novel Sulphate-reducing Bacterium of theDesulfovibrioGenus. Anaerobe, 1998, 4, 117-130.	2.1	53
65	The Structural Origin of Nonplanar Heme Distortions in Tetraheme Ferricytochromesc3â€. Biochemistry, 1998, 37, 12431-12442.	2.5	90
66	57Fe Q-Band Pulsed ENDOR of the Hetero-Dinuclear Site of Nickel Hydrogenase:Â Comparison of the NiA, NiB, and NiC States. Journal of the American Chemical Society, 1997, 119, 9291-9292.	13.7	103
67	Functional Necessity and Physicochemical Characteristics of the [2Feâ~'2S] Cluster in Mammalian Ferrochelatase. Journal of the American Chemical Society, 1996, 118, 9892-9900.	13.7	44
68	Structure of the Ni Sites in Hydrogenases by X-ray Absorption Spectroscopy. Species Variation and the Effects of Redox Poise. Journal of the American Chemical Society, 1996, 118, 11155-11165.	13.7	113
69	Characterization of Representative Enzymes from a Sulfate Reducing Bacterium Implicated in the Corrosion of Steel. Biochemical and Biophysical Research Communications, 1996, 221, 414-421.	2.1	29
70	Structure and function of ferrochelatase. Journal of Bioenergetics and Biomembranes, 1995, 27, 221-229.	2.3	70
71	Characterization of the Iron-binding Site in Mammalian Ferrochelatase by Kinetic and Mössbauer Methods. Journal of Biological Chemistry, 1995, 270, 26352-26357.	3.4	29
72	Study of parameters implicated in the biodeterioration of mild steel in the presence of different species of sulphate-reducing bacteria. International Biodeterioration and Biodegradation, 1994, 34, 289-303.	3.9	45

#	Article	IF	CITATIONS
73	Characterization of D. desulfuricans (ATCC 27774) [NiFe] hydrogenase EPR and redox properties of the native and the dihydrogen reacted states. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1144, 302-308.	1.0	6
74	Voltammetric studies of the catalytic electron-transfer process between the Desulfovibrio gigas hydrogenase and small proteins isolated from the same genus. FEBS Journal, 1993, 217, 981-989.	0.2	34