
Ondrej Machon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4856038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Tankyrase Inhibitor Decreases Canonical Wnt Signaling in Colon Carcinoma Cells and Reduces Tumor Growth in Conditional APC Mutant Mice. Cancer Research, 2012, 72, 2822-2832.	0.9	301
2	A Novel Tankyrase Small-Molecule Inhibitor Suppresses <i>APC</i> Mutation–Driven Colorectal Tumor Growth. Cancer Research, 2013, 73, 3132-3144.	0.9	282
3	N-cadherin mediates cortical organization in the mouse brain. Developmental Biology, 2007, 304, 22-33.	2.0	275
4	Role of β-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience, 2003, 122, 129-143.	2.3	208
5	Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. Developmental Biology, 2005, 279, 155-168.	2.0	202
6	A dynamic gradient of Wnt signaling controls initiation of neurogenesis in the mammalian cortex and cellular specification in the hippocampus. Developmental Biology, 2007, 311, 223-237.	2.0	181
7	Novel Synthetic Antagonists of Canonical Wnt Signaling Inhibit Colorectal Cancer Cell Growth. Cancer Research, 2011, 71, 197-205.	0.9	153
8	Meis2 is essential for cranial and cardiac neural crest development. BMC Developmental Biology, 2015, 15, 40.	2.1	99
9	Characterisation of the Wnt antagonists and their response to conditionally activated Wnt signalling in the developing mouse forebrain. Developmental Brain Research, 2004, 153, 261-270.	1.7	92
10	Wnt-mediated Down-regulation of Sp1 Target Genes by a Transcriptional Repressor Sp5. Journal of Biological Chemistry, 2007, 282, 1225-1237.	3.4	67
11	Abnormal lens morphogenesis and ectopic lens formation in the absence of Î ² -catenin function. Genesis, 2007, 45, 157-168.	1.6	62
12	The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6. PLoS Genetics, 2016, 12, e1006441.	3.5	55
13	Forebrain-specific promoter/enhancer D6 derived from the mouse Dach1 gene controls expression in neural stem cells. Neuroscience, 2002, 112, 951-966.	2.3	53
14	The cellular fate of cortical progenitors is not maintained in neurosphere cultures. Molecular and Cellular Neurosciences, 2005, 30, 388-397.	2.2	46
15	Effect of canonical Wnt inhibition in the neurogenic cortex, hippocampus, and premigratory dentate gyrus progenitor pool. Developmental Dynamics, 2008, 237, 1799-1811.	1.8	44
16	Lens morphogenesis is dependent on Pax6â€mediated inhibition of the canonical Wnt/betaâ€catenin signaling in the lens surface ectoderm. Genesis, 2010, 48, 86-95.	1.6	42
17	The mouse enhancer element D6 directs Cre recombinase activity in the neocortex and the hippocampus. Mechanisms of Development, 2002, 110, 179-182.	1.7	34
18	Generation of mRx-Cre Transgenic Mouse Line for Efficient Conditional Gene Deletion in Early Retinal Progenitors. PLoS ONE, 2013, 8, e63029.	2.5	33

Ondrej Machon

#	Article	IF	CITATIONS
19	Tcf7L2 is essential for neurogenesis in the developing mouse neocortex. Neural Development, 2018, 13, 8.	2.4	31
20	Inhibition of the Rous Sarcoma Virus Long Terminal Repeat-Driven Transcription byin VitroMethylation: Different Sensitivity in Permissive Chicken Cells versus Mammalian Cells. Virology, 1999, 255, 171-181.	2.4	27
21	Polycomb repression complex 2 is required for the maintenance of retinal progenitor cells and balanced retinal differentiation. Developmental Biology, 2018, 433, 47-60.	2.0	25
22	Targeted disruption of mouse Dach1 results in postnatal lethality. Developmental Dynamics, 2003, 226, 139-144.	1.8	24
23	Ectopic Activation of Wnt/β-Catenin Signaling in Lens Fiber Cells Results in Cataract Formation and Aberrant Fiber Cell Differentiation. PLoS ONE, 2013, 8, e78279.	2.5	22
24	Characterization of Mammalian Orthologues of the Drosophila osa Gene: cDNA Cloning, Expression, Chromosomal Localization, and Direct Physical Interaction with Brahma Chromatin-Remodeling Complex. Genomics, 2001, 73, 140-148.	2.9	18
25	Tcf7l1 protects the anterior neural fold from adopting the neural crest fate. Development (Cambridge), 2016, 143, 2206-2216.	2.5	17
26	The transcriptional regulator MEIS2 sets up the ground state for palatal osteogenesis in mice. Journal of Biological Chemistry, 2020, 295, 5449-5460.	3.4	15
27	Yeast two-hybrid system identifies the ubiquitin-conjugating enzyme mUbc9 as a potential partner of mouse Dac. Mechanisms of Development, 2000, 97, 3-12.	1.7	14
28	Wnt/β-catenin signalling is necessary for gut differentiation in a marine annelid, Platynereis dumerilii. EvoDevo, 2018, 9, 14.	3.2	14
29	MEIS-WNT5A axis regulates development of fourth ventricle choroid plexus. Development (Cambridge), 2021, 148, .	2.5	13
30	Mouse Tcf3 represses canonical Wnt signaling by either competing for β-catenin binding or through occupation of DNA-binding sites. Molecular and Cellular Biochemistry, 2012, 365, 53-63.	3.1	12
31	Genetic interaction between Pax6 and \hat{l}^2 -catenin in the developing retinal pigment epithelium. Development Genes and Evolution, 2015, 225, 121-128.	0.9	12
32	Neural crest cells require Meis2 for patterning the mandibular arch via the Sonic hedgehog pathway. Biology Open, 2020, 9, .	1.2	12
33	In Vitro Differentiation of Mouse Embryonic Stem Cells into Neurons of the Dorsal Forebrain. Cellular and Molecular Neurobiology, 2011, 31, 715-727.	3.3	11
34	Sp1 binding sites inserted into the Rous sarcoma virus long terminal repeat enhance LTR-driven gene expression. Gene, 1998, 208, 73-82.	2.2	9
35	The Mandibular and Hyoid Arches—From Molecular Patterning to Shaping Bone and Cartilage. International Journal of Molecular Sciences, 2021, 22, 7529.	4.1	9
36	Characterization and functional analysis of the 5′-flanking promoter region of the mouse Tcf3 gene. Molecular and Cellular Biochemistry, 2012, 360, 289-299.	3.1	6