List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4855515/publications.pdf Version: 2024-02-01

208 papers	24,532 citations	10389 72 h-index	8396 147 g-index
217	217	217	25435
all docs	docs citations	times ranked	citing authors

ANCELA COX

#	Article	IF	CITATIONS
1	Accounting for <i>EGFR</i> Mutations in Epidemiologic Analyses of Non–Small Cell Lung Cancers: Examples Based on the International Lung Cancer Consortium Data. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 679-687.	2.5	1
2	Rare germline copy number variants (CNVs) and breast cancer risk. Communications Biology, 2022, 5, 65.	4.4	6
3	Gene–gene interaction of AhRwith and within the Wntcascade affects susceptibility to lung cancer. European Journal of Medical Research, 2022, 27, 14.	2.2	1
4	Common variants in breast cancer risk loci predispose to distinct tumor subtypes. Breast Cancer Research, 2022, 24, 2.	5.0	15
5	lam hiQ—a novel pair of accuracy indices for imputed genotypes. BMC Bioinformatics, 2022, 23, 50.	2.6	2
6	A biobank perspective on use of tissue samples donated by trial participants. Lancet Oncology, The, 2022, 23, e205.	10.7	2
7	Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk. Journal of the National Cancer Institute, 2021, 113, 329-337.	6.3	45
8	Causal relationships between body mass index, smoking and lung cancer: Univariable and multivariable Mendelian randomization. International Journal of Cancer, 2021, 148, 1077-1086.	5.1	73
9	CYP3A7*1C allele: linking premenopausal oestrone and progesterone levels with risk of hormone receptor-positive breast cancers. British Journal of Cancer, 2021, 124, 842-854.	6.4	5
10	The utility of the Laplace effect size prior distribution in Bayesian fineâ€mapping studies. Genetic Epidemiology, 2021, 45, 386-401.	1.3	3
11	Gene-Environment Interactions Relevant to Estrogen and Risk of Breast Cancer: Can Gene-Environment Interactions Be Detected Only among Candidate SNPs from Genome-Wide Association Studies?. Cancers, 2021, 13, 2370.	3.7	4
12	Functional annotation of the 2q35 breast cancer risk locus implicates a structural variant in influencing activity of a long-range enhancer element. American Journal of Human Genetics, 2021, 108, 1190-1203.	6.2	6
13	Association of germline genetic variants with breast cancer-specific survival in patient subgroups defined by clinic-pathological variables related to tumor biology and type of systemic treatment. Breast Cancer Research, 2021, 23, 86.	5.0	7
14	Mendelian randomisation study of smoking exposure in relation to breast cancer risk. British Journal of Cancer, 2021, 125, 1135-1145.	6.4	9
15	Genetic insights into biological mechanisms governing human ovarian ageing. Nature, 2021, 596, 393-397.	27.8	183
16	Breast Cancer Risk Factors and Survival by Tumor Subtype: Pooled Analyses from the Breast Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 623-642.	2.5	19
17	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
18	Breast Cancer Polygenic Risk Score and Contralateral Breast Cancer Risk. American Journal of Human Genetics, 2020, 107, 837-848.	6.2	39

#	Article	IF	CITATIONS
19	Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nature Genetics, 2020, 52, 572-581.	21.4	265
20	Protein-altering germline mutations implicate novel genes related to lung cancer development. Nature Communications, 2020, 11, 2220.	12.8	31
21	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	1.3	32
22	A network analysis to identify mediators of germline-driven differences in breast cancer prognosis. Nature Communications, 2020, 11, 312.	12.8	30
23	Using GWAS top hits to inform priors in Bayesian fineâ€mapping association studies. Genetic Epidemiology, 2019, 43, 675-689.	1.3	10
24	Bayesian variable selection using partially observed categorical prior information in fineâ€mapping association studies. Genetic Epidemiology, 2019, 43, 690-703.	1.3	6
25	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	12.8	88
26	Elevated Platelet Count Appears to Be Causally Associated with Increased Risk of Lung Cancer: A Mendelian Randomization Analysis. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 935-942.	2.5	21
27	Genetic interaction analysis among oncogenesis-related genes revealed novel genes and networks in lung cancer development. Oncotarget, 2019, 10, 1760-1774.	1.8	25
28	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	12.8	90
29	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	6.4	52
30	Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American Journal of Human Genetics, 2019, 104, 21-34.	6.2	711
31	Genetic susceptibility to radiation-induced breast cancer after Hodgkin lymphoma. Blood, 2019, 133, 1130-1139.	1.4	29
32	Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. International Journal of Epidemiology, 2019, 48, 795-806.	1.9	81
33	The <i>BRCA2</i> c.68-7TÂ>ÂA variant is not pathogenic: A model for clinical calibration of spliceogenicity. Human Mutation, 2018, 39, 729-741.	2.5	19
34	Genetic overlap between endometriosis and endometrial cancer: evidence from crossâ€disease genetic correlation and GWAS metaâ€analyses. Cancer Medicine, 2018, 7, 1978-1987.	2.8	62
35	Genome-wide interaction study of smoking behavior and non-small cell lung cancer risk in Caucasian population. Carcinogenesis, 2018, 39, 336-346.	2.8	29
36	Joint associations of a polygenic risk score and environmental risk factors for breast cancer in the Breast Cancer Association Consortium. International Journal of Epidemiology, 2018, 47, 526-536.	1.9	88

#	Article	IF	CITATIONS
37	Genome-Wide Analysis of Circulating Cell-Free DNA Copy Number Detects Active Melanoma and Predicts Survival. Clinical Chemistry, 2018, 64, 1338-1346.	3.2	9
38	Triple-Negative Breast Cancer Risk Genes Identified by Multigene Hereditary Cancer Panel Testing. Journal of the National Cancer Institute, 2018, 110, 855-862.	6.3	225
39	Identification of nine new susceptibility loci for endometrial cancer. Nature Communications, 2018, 9, 3166.	12.8	178
40	Identification of susceptibility pathways for the role of chromosome 15q25.1 in modifying lung cancer risk. Nature Communications, 2018, 9, 3221.	12.8	60
41	A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature Genetics, 2018, 50, 968-978.	21.4	184
42	<i>BRCA2</i> Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer. Cancer Research, 2017, 77, 2789-2799.	0.9	75
43	Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 2017, 49, 834-841.	21.4	426
44	Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nature Genetics, 2017, 49, 1126-1132.	21.4	472
45	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	27.8	1,099
46	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
47	Gene–environment interactions involving functional variants: Results from the Breast Cancer Association Consortium. International Journal of Cancer, 2017, 141, 1830-1840.	5.1	20
48	Genetic modifiers of CHEK2*1100delC-associated breast cancer risk. Genetics in Medicine, 2017, 19, 599-603.	2.4	67
49	Body mass index and breast cancer survival: a Mendelian randomization analysis. International Journal of Epidemiology, 2017, 46, 1814-1822.	1.9	45
50	Reproductive profiles and risk of breast cancer subtypes: a multi-center case-only study. Breast Cancer Research, 2017, 19, 119.	5.0	43
51	Lung cancer and chronic obstructive pulmonary disease: From a clinical perspective. Oncotarget, 2017, 8, 18513-18524.	1.8	44
52	<i>PHIP</i> - a novel candidate breast cancer susceptibility locus on 6q14.1. Oncotarget, 2017, 8, 102769-102782.	1.8	9
53	Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21. Oncotarget, 2016, 7, 80140-80163.	1.8	31
54	Genetically Predicted Body Mass Index and Breast Cancer Risk: Mendelian Randomization Analyses of Data from 145,000 Women of European Descent. PLoS Medicine, 2016, 13, e1002105.	8.4	118

#	Article	IF	CITATIONS
55	Fine-Mapping of the 1p11.2 Breast Cancer Susceptibility Locus. PLoS ONE, 2016, 11, e0160316.	2.5	12
56	Consensus Analysis of Whole Transcriptome Profiles from Two Breast Cancer Patient Cohorts Reveals Long Non-Coding RNAs Associated with Intrinsic Subtype and the Tumour Microenvironment. PLoS ONE, 2016, 11, e0163238.	2.5	21
57	Discordant Haplotype Sequencing Identifies Functional Variants at the 2q33 Breast Cancer Risk Locus. Cancer Research, 2016, 76, 1916-1925.	0.9	7
58	Fineâ€scale mapping of 8q24 locus identifies multiple independent risk variants for breast cancer. International Journal of Cancer, 2016, 139, 1303-1317.	5.1	51
59	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COCS. Journal of Medical Genetics, 2016, 53, 800-811.	3.2	174
60	Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus. Breast Cancer Research, 2016, 18, 64.	5.0	31
61	Genes associated with histopathologic features of triple negative breast tumors predict molecular subtypes. Breast Cancer Research and Treatment, 2016, 157, 117-131.	2.5	18
62	Genetic predisposition to ductal carcinoma in situ of the breast. Breast Cancer Research, 2016, 18, 22.	5.0	43
63	Association of genetic susceptibility variants for type 2 diabetes with breast cancer risk in women of European ancestry. Cancer Causes and Control, 2016, 27, 679-693.	1.8	21
64	Five endometrial cancer risk loci identified through genome-wide association analysis. Nature Genetics, 2016, 48, 667-674.	21.4	77
65	Evidence that the 5p12 Variant rs10941679 Confers Susceptibility to Estrogen-Receptor-Positive Breast Cancer through FGF10 and MRPS30 Regulation. American Journal of Human Genetics, 2016, 99, 903-911.	6.2	59
66	Incorporating Functional Genomic Information in Genetic Association Studies Using an Empirical Bayes Approach. Genetic Epidemiology, 2016, 40, 176-187.	1.3	14
67	An intergenic risk locus containing an enhancer deletion in 2q35 modulates breast cancer risk by deregulating IGFBP5 expression. Human Molecular Genetics, 2016, 25, 3863-3876.	2.9	33
68	Genetic Risk Score Mendelian Randomization Shows that Obesity Measured as Body Mass Index, but not Waist:Hip Ratio, Is Causal for Endometrial Cancer. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1503-1510.	2.5	64
69	rs2735383, located at a microRNA binding site in the 3'UTR of NBS1, is not associated with breast cancer risk. Scientific Reports, 2016, 6, 36874.	3.3	2
70	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	9.4	157
71	Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nature Communications, 2016, 7, 11375.	12.8	93
72	Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast–ovarian cancer susceptibility locus. Nature Communications, 2016, 7, 12675.	12.8	78

#	Article	IF	CITATIONS
73	Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs). Scientific Reports, 2016, 6, 32512.	3.3	19
74	Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nature Communications, 2016, 7, 10933.	12.8	94
75	Age- and Tumor Subtype–Specific Breast Cancer Risk Estimates for <i>CHEK2</i> *1100delC Carriers. Journal of Clinical Oncology, 2016, 34, 2750-2760.	1.6	152
76	CYP19A1 fine-mapping and Mendelian randomization: estradiol is causal for endometrial cancer. Endocrine-Related Cancer, 2016, 23, 77-91.	3.1	62
77	No evidence that protein truncating variants in <i>BRIP1</i> are associated with breast cancer risk: implications for gene panel testing. Journal of Medical Genetics, 2016, 53, 298-309.	3.2	94
78	Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Nature Genetics, 2016, 48, 374-386.	21.4	125
79	Heterogeneity of luminal breast cancer characterised by immunohistochemical expression of basal markers. British Journal of Cancer, 2016, 114, 298-304.	6.4	7
80	Genetic variation in the immunosuppression pathway genes and breast cancer susceptibility: a pooled analysis of 42,510 cases and 40,577 controls from the Breast Cancer Association Consortium. Human Genetics, 2016, 135, 137-154.	3.8	8
81	BRCA2 Polymorphic Stop Codon K3326X and the Risk of Breast, Prostate, and Ovarian Cancers. Journal of the National Cancer Institute, 2016, 108, djv315.	6.3	77
82	No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer. Gynecologic Oncology, 2016, 141, 386-401.	1.4	18
83	RAD51B in Familial Breast Cancer. PLoS ONE, 2016, 11, e0153788.	2.5	26
84	Levels of DNA Methylation Vary at CpG Sites across the BRCA1 Promoter, and Differ According to Triple Negative and "BRCA-Like―Status, in Both Blood and Tumour DNA. PLoS ONE, 2016, 11, e0160174.	2.5	14
85	Altered RECQL5 expression in urothelial bladder carcinoma increases cellular proliferation and makes RECQL5 helicase activity a novel target for chemotherapy. Oncotarget, 2016, 7, 76140-76150.	1.8	19
86	Novel Bayes Factors That Capture Expert Uncertainty in Prior Density Specification in Genetic Association Studies. Genetic Epidemiology, 2015, 39, 239-248.	1.3	10
87	Investigation of geneâ€environment interactions between 47 newly identified breast cancer susceptibility loci and environmental risk factors. International Journal of Cancer, 2015, 136, E685-96.	5.1	34
88	Meta-analysis of genome-wide association studies identifies common susceptibility polymorphisms for colorectal and endometrial cancer near SH2B3 and TSHZ1. Scientific Reports, 2015, 5, 17369.	3.3	35
89	Common germline polymorphisms associated with breast cancer-specific survival. Breast Cancer Research, 2015, 17, 58.	5.0	26
90	SNP-SNP interaction analysis of NF-κB signaling pathway on breast cancer survival. Oncotarget, 2015, 6, 37979-37994.	1.8	20

#	Article	IF	CITATIONS
91	Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants. Journal of the National Cancer Institute, 2015, 107, .	6.3	428
92	Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium. Journal of Pathology: Clinical Research, 2015, 1, 18-32.	3.0	24
93	Crowdsourcing the General Public for Large Scale Molecular Pathology Studies in Cancer. EBioMedicine, 2015, 2, 681-689.	6.1	56
94	Pleiotropy in Aggressive Prostate Cancer?. European Urology, 2015, 67, 658-659.	1.9	1
95	Inherited Mutations in 17 Breast Cancer Susceptibility Genes Among a Large Triple-Negative Breast Cancer Cohort Unselected for Family History of Breast Cancer. Journal of Clinical Oncology, 2015, 33, 304-311.	1.6	521
96	Fine-mapping identifies two additional breast cancer susceptibility loci at 9q31.2. Human Molecular Genetics, 2015, 24, 2966-2984.	2.9	40
97	Fine-Scale Mapping of the 5q11.2 Breast Cancer Locus Reveals at Least Three Independent Risk Variants Regulating MAP3K1. American Journal of Human Genetics, 2015, 96, 5-20.	6.2	76
98	Inherited variants in the inner centromere protein (INCENP) gene of the chromosomal passenger complex contribute to the susceptibility of ER-negative breast cancer. Carcinogenesis, 2015, 36, 256-271.	2.8	14
99	Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer. Nature Genetics, 2015, 47, 373-380.	21.4	513
100	Polymorphisms in a Putative Enhancer at the 10q21.2 Breast Cancer Risk Locus Regulate NRBF2 Expression. American Journal of Human Genetics, 2015, 97, 22-34.	6.2	37
101	Identification of Novel Genetic Markers of Breast Cancer Survival. Journal of the National Cancer Institute, 2015, 107, .	6.3	56
102	Risk Analysis of Prostate Cancer in PRACTICAL, a Multinational Consortium, Using 25 Known Prostate Cancer Susceptibility Loci. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1121-1129.	2.5	56
103	Candidate locus analysis of the TERT–CLPTM1L cancer risk region on chromosome 5p15 identifies multiple independent variants associated with endometrial cancer risk. Human Genetics, 2015, 134, 231-245.	3.8	34
104	Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nature Genetics, 2015, 47, 1294-1303.	21.4	357
105	Contemporary Occupational Carcinogen Exposure and Bladder Cancer. JAMA Oncology, 2015, 1, 1282.	7.1	184
106	Height and Breast Cancer Risk: Evidence From Prospective Studies and Mendelian Randomization. Journal of the National Cancer Institute, 2015, 107, djv219.	6.3	99
107	Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer. Endocrine-Related Cancer, 2015, 22, 851-861.	3.1	25
108	Fine-Scale Mapping of the 4q24 Locus Identifies Two Independent Loci Associated with Breast Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1680-1691.	2.5	24

#	Article	IF	CITATIONS
109	Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk. Human Molecular Genetics, 2015, 24, 285-298.	2.9	38
110	Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk. Human Molecular Genetics, 2015, 24, 1478-1492.	2.9	50
111	Patient-Reported Outcomes (PRO) in the Setting of Relapsed Myeloma: The Influence of Treatment Strategies and Genetic Variants Predict Quality of Life and Pain Experience. Blood, 2015, 126, 3180-3180.	1.4	0
112	MicroRNA Related Polymorphisms and Breast Cancer Risk. PLoS ONE, 2014, 9, e109973.	2.5	49
113	Genetic Predisposition to In Situ and Invasive Lobular Carcinoma of the Breast. PLoS Genetics, 2014, 10, e1004285.	3.5	39
114	Comparing the Efficacy of SNP Filtering Methods for Identifying a Single Causal SNP in a Known Association Region. Annals of Human Genetics, 2014, 78, 50-61.	0.8	13
115	Common non-synonymous SNPs associated with breast cancer susceptibility: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2014, 23, 6096-6111.	2.9	53
116	Refined histopathological predictors of BRCA1 and BRCA2mutation status: a large-scale analysis of breast cancer characteristics from the BCAC, CIMBA, and ENIGMA consortia. Breast Cancer Research, 2014, 16, 3419.	5.0	97
117	DNA mismatch repair gene MSH6 implicated in determining age at natural menopause. Human Molecular Genetics, 2014, 23, 2490-2497.	2.9	56
118	A large-scale assessment of two-way SNP interactions in breast cancer susceptibility using 46 450 cases and 42 461 controls from the breast cancer association consortium. Human Molecular Genetics, 2014, 23, 1934-1946.	2.9	32
119	Identification of New Genetic Susceptibility Loci for Breast Cancer Through Consideration of Geneâ€Environment Interactions. Genetic Epidemiology, 2014, 38, 84-93.	1.3	28
120	Genome-wide association study identifies 25 known breast cancer susceptibility loci as risk factors for triple-negative breast cancer. Carcinogenesis, 2014, 35, 1012-1019.	2.8	145
121	Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature, 2014, 514, 92-97.	27.8	548
122	Evidence that breast cancer risk at the 2q35 locus is mediated through IGFBP5 regulation. Nature Communications, 2014, 5, 4999.	12.8	105
123	Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade. Human Molecular Genetics, 2014, 23, 6034-6046.	2.9	12
124	Performance of automated scoring of ER, PR, HER2, CK5/6 and EGFR in breast cancer tissue microarrays in the Breast Cancer Association Consortium. The Clinical Journal of Pathology, 2014, , n/a-n/a.	0.0	2
125	FANCD2 re-expression is associated with glioma grade and chemical inhibition of the Fanconi Anaemia pathway sensitises gliomas to chemotherapeutic agents. Oncotarget, 2014, 5, 6414-6424.	1.8	33
126	Human PIF1 helicase supports DNA replication and cell growth under oncogenic-stress. Oncotarget, 2014, 5, 11381-11398.	1.8	34

#	Article	IF	CITATIONS
127	Fine-Scale Mapping of the FGFR2 Breast Cancer Risk Locus: Putative Functional Variants Differentially Bind FOXA1 and E2F1. American Journal of Human Genetics, 2013, 93, 1046-1060.	6.2	98
128	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	21.4	493
129	Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research, 2013, 15, R92.	5.0	320
130	Very Low PSA Concentrations and Deletions of the KLK3 Gene. Clinical Chemistry, 2013, 59, 234-244.	3.2	12
131	Functional Variants at the 11q13 Risk Locus for Breast Cancer Regulate Cyclin D1 Expression through Long-Range Enhancers. American Journal of Human Genetics, 2013, 92, 489-503.	6.2	201
132	Genome-wide association studies identify four ER negative–specific breast cancer risk loci. Nature Genetics, 2013, 45, 392-398.	21.4	374
133	Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nature Genetics, 2013, 45, 385-391.	21.4	492
134	Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nature Genetics, 2013, 45, 353-361.	21.4	960
135	Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nature Genetics, 2013, 45, 868-876.	21.4	179
136	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	2.9	118
137	Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk. PLoS Genetics, 2013, 9, e1003173.	3.5	105
138	Evidence of Gene–Environment Interactions between Common Breast Cancer Susceptibility Loci and Established Environmental Risk Factors. PLoS Genetics, 2013, 9, e1003284.	3.5	136
139	Circulating cell-free DNA: a potential biomarker in lung cancer. Lung Cancer Management, 2013, 2, 407-422.	1.5	0
140	Identification of Candidate Driver Genes in Common Focal Chromosomal Aberrations of Microsatellite Stable Colorectal Cancer. PLoS ONE, 2013, 8, e83859.	2.5	29
141	Associations of ATR and CHEK1 Single Nucleotide Polymorphisms with Breast Cancer. PLoS ONE, 2013, 8, e68578.	2.5	13
142	19p13.1 Is a Triple-Negative–Specific Breast Cancer Susceptibility Locus. Cancer Research, 2012, 72, 1795-1803.	0.9	100
143	Fine-Mapping <i>CASP8</i> Risk Variants in Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 176-181.	2.5	21
144	<i>CHEK2</i> *1100delC Heterozygosity in Women With Breast Cancer Associated With Early Death, Breast Cancer–Specific Death, and Increased Risk of a Second Breast Cancer. Journal of Clinical Oncology, 2012, 30, 4308-4316.	1.6	162

#	Article	IF	CITATIONS
145	The role of genetic breast cancer susceptibility variants as prognostic factors. Human Molecular Genetics, 2012, 21, 3926-3939.	2.9	80
146	Genome-wide association analysis identifies three new breast cancer susceptibility loci. Nature Genetics, 2012, 44, 312-318.	21.4	256
147	Lack of association between polymorphisms in the interleukin-1 gene cluster and familial thrombophilia. Thrombosis Research, 2012, 129, 629-634.	1.7	0
148	9q31.2-rs865686 as a Susceptibility Locus for Estrogen Receptor-Positive Breast Cancer: Evidence from the Breast Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1783-1791.	2.5	17
149	A BCL2 promoter polymorphism rs2279115 is not associated with BCL2 protein expression or patient survival in breast cancer patients. SpringerPlus, 2012, 1, 38.	1.2	10
150	A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. Human Molecular Genetics, 2012, 21, 5373-5384.	2.9	168
151	Breast Cancer Risk and 6q22.33: Combined Results from Breast Cancer Association Consortium and Consortium of Investigators on Modifiers of BRCA1/2. PLoS ONE, 2012, 7, e35706.	2.5	11
152	11q13 is a susceptibility locus for hormone receptor positive breast cancer. Human Mutation, 2012, 33, 1123-1132.	2.5	35
153	Comparison of 6q25 Breast Cancer Hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC). PLoS ONE, 2012, 7, e42380.	2.5	51
154	Confirmation of 5p12 As a Susceptibility Locus for Progesterone-Receptor–Positive, Lower Grade Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2222-2231.	2.5	27
155	Associations of Breast Cancer Risk Factors With Tumor Subtypes: A Pooled Analysis From the Breast Cancer Association Consortium Studies. Journal of the National Cancer Institute, 2011, 103, 250-263.	6.3	596
156	Low penetrance breast cancer susceptibility loci are associated with specific breast tumor subtypes: findings from the Breast Cancer Association Consortium. Human Molecular Genetics, 2011, 20, 3289-3303.	2.9	152
157	A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer. Nature Genetics, 2011, 43, 1210-1214.	21.4	279
158	A role for XRCC2 gene polymorphisms in breast cancer risk and survival. Journal of Medical Genetics, 2011, 48, 477-484.	3.2	47
159	Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nature Genetics, 2011, 43, 785-791.	21.4	265
160	Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype: findings from the Breast Cancer Association Consortiumâ€. Human Molecular Genetics, 2011, 20, 4693-4706.	2.9	71
161	7q21-rs6964587 and breast cancer risk: an extended case-control study by the Breast Cancer Association Consortium. Journal of Medical Cenetics, 2011, 48, 698-702.	3.2	5
162	Common Breast Cancer Susceptibility Loci Are Associated with Triple-Negative Breast Cancer. Cancer Research, 2011, 71, 6240-6249.	0.9	109

#	Article	IF	CITATIONS
163	The causal roles of vitamin B(12) and transcobalamin in prostate cancer: can Mendelian randomization analysis provide definitive answers?. International Journal of Molecular Epidemiology and Genetics, 2011, 2, 316-27.	0.4	9
164	Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Research, 2010, 12, R110.	5.0	82
165	A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population. Nature Genetics, 2010, 42, 885-892.	21.4	309
166	Associations of Folate, Vitamin B12, Homocysteine, and Folate-Pathway Polymorphisms with Prostate-Specific Antigen Velocity in Men with Localized Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2833-2838.	2.5	20
167	Missense Variants in <i>ATM</i> in 26,101 Breast Cancer Cases and 29,842 Controls. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2143-2151.	2.5	33
168	Subtyping of Breast Cancer by Immunohistochemistry to Investigate a Relationship between Subtype and Short and Long Term Survival: A Collaborative Analysis of Data for 10,159 Cases from 12 Studies. PLoS Medicine, 2010, 7, e1000279.	8.4	764
169	Association Between a Germline OCA2 Polymorphism at Chromosome 15q13.1 and Estrogen Receptor–Negative Breast Cancer Survival. Journal of the National Cancer Institute, 2010, 102, 650-662.	6.3	48
170	Associations between an Obesity Related Genetic Variant (FTO rs9939609) and Prostate Cancer Risk. PLoS ONE, 2010, 5, e13485.	2.5	61
171	A Breast Cancer Risk Haplotype in the Caspase-8 Gene. Cancer Research, 2009, 69, 2724-2728.	0.9	27
172	Genetic Variants in <i>XRCC2</i> : New Insights Into Colorectal Cancer Tumorigenesis. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2476-2484.	2.5	38
173	Risk of Estrogen Receptor–Positive and –Negative Breast Cancer and Single–Nucleotide Polymorphism 2q35-rs13387042. Journal of the National Cancer Institute, 2009, 101, 1012-1018.	6.3	99
174	Meta Association of Colorectal Cancer Confirms Risk Alleles at 8q24 and 18q21. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 616-621.	2.5	71
175	Genetic Variants in the Vitamin D Receptor Are Associated with Advanced Prostate Cancer at Diagnosis: Findings from the Prostate Testing for Cancer and Treatment Study and a Systematic Review. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2874-2881.	2.5	64
176	Association of Folate-Pathway Gene Polymorphisms with the Risk of Prostate Cancer: a Population-Based Nested Case-Control Study, Systematic Review, and Meta-analysis. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2528-2539.	2.5	89
177	Identification of new genetic risk factors for prostate cancer. Asian Journal of Andrology, 2009, 11, 49-55.	1.6	23
178	Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nature Genetics, 2009, 41, 585-590.	21.4	434
179	Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nature Genetics, 2009, 41, 1116-1121.	21.4	389
180	Five Polymorphisms and Breast Cancer Risk: Results from the Breast Cancer Association Consortium. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 1610-1616.	2.5	57

#	Article	IF	CITATIONS
181	The CASP8 -652 6N del promoter polymorphism and breast cancer risk: a multicenter study. Breast Cancer Research and Treatment, 2008, 111, 139-144.	2.5	50
182	MLH1 â^'93G>A promoter polymorphism and risk of mismatch repair deficient colorectal cancer. International Journal of Cancer, 2008, 123, 2456-2459.	5.1	44
183	Evaluation of the current knowledge limitations in breast cancer research: a gap analysis. Breast Cancer Research, 2008, 10, R26.	5.0	88
184	hapConstructor: automatic construction and testing of haplotypes in a Monte Carlo framework. Bioinformatics, 2008, 24, 2105-2107.	4.1	17
185	Multiple Novel Prostate Cancer Predisposition Loci Confirmed by an International Study: The PRACTICAL Consortium. Cancer Epidemiology Biomarkers and Prevention, 2008, 17, 2052-2061.	2.5	148
186	Heterogeneity of Breast Cancer Associations with Five Susceptibility Loci by Clinical and Pathological Characteristics. PLoS Genetics, 2008, 4, e1000054.	3.5	315
187	Thymidine Selectively Enhances Growth Suppressive Effects of Camptothecin/Irinotecan in MSI+ Cells and Tumors Containing a Mutation of <i>MRE11</i> . Clinical Cancer Research, 2008, 14, 5476-5483.	7.0	39
188	A common coding variant in CASP8 is associated with breast cancer risk. Nature Genetics, 2007, 39, 352-358.	21.4	591
189	Genome-wide association study identifies novel breast cancer susceptibility loci. Nature, 2007, 447, 1087-1093.	27.8	2,165
190	Endostatin gene variation and protein levels in breast cancer susceptibility and severity. BMC Cancer, 2007, 7, 107.	2.6	20
191	Combination of Polymorphisms From Genes Related to Estrogen Metabolism and Risk of Prostate Cancers: The Hidden Face of Estrogens. Journal of Clinical Oncology, 2007, 25, 3596-3602.	1.6	89
192	Mitotic defects in XRCC3 variants T241M and D213N and their relation to cancer susceptibility. Human Molecular Genetics, 2006, 15, 1217-1224.	2.9	37
193	RESPONSE: Re: Association of a Common Variant of the CASP8 Gene With Reduced Risk of Breast Cancer. Journal of the National Cancer Institute, 2005, 97, 1012-1013.	6.3	4
194	Association of a Common Variant of the CASP8 Gene With Reduced Risk of Breast Cancer. Journal of the National Cancer Institute, 2004, 96, 1866-1869.	6.3	188
195	Role of tumour necrosis factor gene polymorphisms (-308 and -238) in breast cancer susceptibility and severity. Breast Cancer Research, 2004, 6, R395-400.	5.0	65
196	A naturally occurring mutation in an ATP-binding domain of the recombination repair gene XRCC3 ablates its function without causing cancer susceptibility. Human Molecular Genetics, 2003, 12, 915-923.	2.9	13
197	A potential role for the XRCC2 R188H polymorphic site in DNA-damage repair and breast cancer. Human Molecular Genetics, 2002, 11, 1433-1438.	2.9	106
198	The interleukin 1 receptor antagonist gene allele 2 as a predictor of pouchitis following colectomy and IPAA in ulcerative colitis. Gastroenterology, 2001, 121, 805-811.	1.3	121

#	Article	IF	CITATIONS
199	Association analysis of IL1A and IL1B variants in alopecia areata. Heredity, 2001, 87, 215-219.	2.6	19
200	Structure and polymorphism of the human gene for the interferon-induced p78 protein (MX1): evidence of association with alopecia areata in the Down syndrome region. Human Genetics, 2000, 106, 639-645.	3.8	19
201	Structure and polymorphism of the human gene for the interferon-induced p78 protein (MX1): evidence of association with alopecia areata in the Down syndrome region. Human Genetics, 2000, 106, 639-645.	3.8	54
202	An Analysis of Linkage Disequilibrium in the Interleukin-1 Gene Cluster, Using a Novel Grouping Method for Multiallelic Markers. American Journal of Human Genetics, 1998, 62, 1180-1188.	6.2	176
203	The Human Gene Encoding the Interleukin-1 Receptor Accessory Protein (IL1RAP) Maps to Chromosome 3q28 by Fluorescencein SituHybridization and Radiation Hybrid Mapping. Genomics, 1998, 47, 325-326.	2.9	12
204	Molecular Cloning of the Interleukin-1 Gene Cluster: Construction of an Integrated YAC/PAC Contig and a Partial Transcriptional Map in the Region of Chromosome 2q13. Genomics, 1997, 41, 370-378.	2.9	45
205	Interleukin-1 receptor antagonist allele (ILIRN*2) associated with nephropathy in diabetes mellitus. Human Genetics, 1996, 97, 369-374.	3.8	141
206	Interleukin-1 receptor antagonist allele (IL1RN*2) associated with nephropathy in diabetes mellitus. Human Genetics, 1996, 97, 369-374.	3.8	23
207	Novel interleukin-1 receptor antagonist exon polymorphisms and their use in allele-specific mRNA assessment. Human Genetics, 1996, 97, 723-726.	3.8	17
208	Ultrabithorax mutations map to distant sites within the bithorax complex of Drosophila. Nature, 1984, 309, 635-637.	27.8	18