Eric V Anslyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4855413/publications.pdf Version: 2024-02-01

		22099	20307
203	14,934	59	116
papers	citations	h-index	g-index
213	213	213	11320
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Assembling Inorganic Nanocrystal Gels. Nano Letters, 2022, 22, 1457-1466.	4.5	27
2	Colorimetric quantification of linking in thermoreversible nanocrystal gel assemblies. Science Advances, 2022, 8, eabm7364.	4.7	12
3	Multiplexing the Quantitation of MAP Kinase Activities Using Differential Sensing. Journal of the American Chemical Society, 2022, 144, 4017-4025.	6.6	12
4	Effect of pH on the Properties of Hydrogels Cross-Linked via Dynamic Thia-Michael Addition Bonds. ACS Polymers Au, 2022, 2, 129-136.	1.7	22
5	Chemical insights into flexizyme-mediated tRNA acylation. Cell Chemical Biology, 2022, 29, 1071-1112.	2.5	7
6	Evaluating the Effect of Dye–Dye Interactions of Xanthene-Based Fluorophores in the Fluorosequencing of Peptides. Bioconjugate Chemistry, 2022, 33, 1156-1165.	1.8	3
7	Indicator displacement assays (IDAs): the past, present and future. Chemical Society Reviews, 2021, 50, 9-38.	18.7	139
8	Boronic acid based dynamic click chemistry: recent advances and emergent applications. Chemical Science, 2021, 12, 1585-1599.	3.7	50
9	Ribosome-mediated incorporation of fluorescent amino acids into peptides <i>in vitro</i> . Chemical Communications, 2021, 57, 2661-2664.	2.2	12
10	Colloidal Nanocrystal Gels from Thermodynamic Principles. Accounts of Chemical Research, 2021, 54, 798-807.	7.6	26
11	Effects of linker flexibility on phase behavior and structure of linked colloidal gels. Journal of Chemical Physics, 2021, 154, 074901.	1.2	15
12	"Benchtop―Biaryl Coupling Using Pd/Cu Cocatalysis: Application to the Synthesis of Conjugated Polymers. Organic Letters, 2021, 23, 2873-2877.	2.4	8
13	Efficient molecular encoding in multifunctional self-immolative urethanes. Cell Reports Physical Science, 2021, 2, 100393.	2.8	21
14	A Colorimetric Method for Quantifying Cis and Trans Alkenes Using an Indicator Displacement Assay. Angewandte Chemie, 2021, 133, 13938-13942.	1.6	0
15	A Colorimetric Method for Quantifying Cis and Trans Alkenes Using an Indicator Displacement Assay. Angewandte Chemie - International Edition, 2021, 60, 13819-13823.	7.2	5
16	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	9.0	198
17	High-throughput screening of α-chiral-primary amines to determine yield and enantiomeric excess. Tetrahedron, 2021, 94, 132315.	1.0	4
18	Chemically Triggered Click and Declick Reactions: Application in Synthesis and Degradation of Thermosetting Plastics. ACS Macro Letters, 2021, 10, 1125-1131.	2.3	14

#	Article	IF	CITATIONS
19	Combination of two analytical techniques improves wine classification by Vineyard, Region, and vintage. Food Chemistry, 2021, 354, 129531.	4.2	16
20	A self-degradable hydrogel sensor for a nerve agent tabun surrogate through a self-propagating cascade. Cell Reports Physical Science, 2021, 2, 100552.	2.8	9
21	The Evolution of Data-Driven Modeling in Organic Chemistry. ACS Central Science, 2021, 7, 1622-1637.	5.3	58
22	Electrostatic and Covalent Assemblies of Anionic Hydrogel-Coated Gold Nanoshells for Detection of Dry Eye Biomarkers in Human Tears. Nano Letters, 2021, 21, 8734-8740.	4.5	12
23	Photoredox-Catalyzed Decarboxylative <i>C</i> -Terminal Differentiation for Bulk- and Single-Molecule Proteomics. ACS Chemical Biology, 2021, 16, 2595-2603.	1.6	8
24	A Data-Driven Approach to the Development and Understanding of Chiroptical Sensors for Alcohols with Remote Î ³ -Stereocenters. Journal of the American Chemical Society, 2021, 143, 19187-19198.	6.6	12
25	Studies of Surface Preparation for the Fluorosequencing of Peptides. Langmuir, 2021, 37, 14856-14865.	1.6	3
26	Synthesis of Carboxy ATTO 647N Using Redox Cycling for Xanthone Access. Organic Letters, 2020, 22, 381-385.	2.4	5
27	Quantification of ERK Kinase Activity in Biological Samples Using Differential Sensing. ACS Chemical Biology, 2020, 15, 83-92.	1.6	12
28	2-Amino-3′-dialkylaminobiphenyl-based fluorescent intracellular probes for nitric oxide surrogate N ₂ O ₃ . Chemical Science, 2020, 11, 1394-1403.	3.7	24
29	K-5 Thin-Layer Chromatography: Three-Dimensional Analysis of Pigments from Plant Materials Using an Interlocking Building-Block Photography Box. Journal of Chemical Education, 2020, 97, 4414-4419.	1.1	2
30	Assembly of Linked Nanocrystal Colloids by Reversible Covalent Bonds. Chemistry of Materials, 2020, 32, 10235-10245.	3.2	27
31	High-Throughput Determination of Enantiopurity by Microplate Circular Dichroism. Journal of Organic Chemistry, 2020, 85, 10858-10864.	1.7	24
32	Capture and Release of Protein–Nanoparticle Conjugates by Reversible Covalent Molecular Linkers. Bioconjugate Chemistry, 2020, 31, 2191-2200.	1.8	1
33	Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics. ACS Chemical Biology, 2020, 15, 1401-1407.	1.6	11
34	Preferential Control of Forward Reaction Kinetics in Hydrogels Crosslinked with Reversible Conjugate Additions. Macromolecules, 2020, 53, 3738-3746.	2.2	28
35	Next-Generation TLC: A Quantitative Platform for Parallel Spotting and Imaging. Journal of Organic Chemistry, 2020, 85, 9447-9453.	1.7	7
36	Sequencing of Sequence-Defined Oligourethanes via Controlled Self-Immolation. Journal of the American Chemical Society, 2020, 142, 2744-2749.	6.6	49

#	Article	IF	CITATIONS
37	Chemically Triggered Synthesis, Remodeling, and Degradation of Soft Materials. Journal of the American Chemical Society, 2020, 142, 3913-3922.	6.6	31
38	Nanogel receptors for high isoelectric point protein detection: influence of electrostatic and covalent polymer–protein interactions. Chemical Communications, 2020, 56, 6141-6144.	2.2	12
39	Tunable Orthogonal Reversible Covalent (TORC) Bonds: Dynamic Chemical Control over Molecular Assembly. Angewandte Chemie - International Edition, 2019, 58, 74-85.	7.2	86
40	Einstellbare orthogonale reversible kovalente Bindungen: dynamische Kontrolle über die molekulare Selbstorganisation. Angewandte Chemie, 2019, 131, 76-88.	1.6	22
41	Mechanistic studies of a "Declick―reaction. Chemical Science, 2019, 10, 8817-8824.	3.7	10
42	Rapid Optical Determination of Enantiomeric Excess, Diastereomeric Excess, and Total Concentration Using Dynamic-Covalent Assemblies: A Demonstration Using 2-Aminocyclohexanol and Chemometrics. Journal of the American Chemical Society, 2019, 141, 11151-11160.	6.6	28
43	Design of Chiral Supramolecular Polymers Exhibiting a Negative Nonlinear Response. Journal of Organic Chemistry, 2019, 84, 14587-14592.	1.7	6
44	Expanding the limits of the second genetic code with ribozymes. Nature Communications, 2019, 10, 5097.	5.8	83
45	The mechanisms of boronate ester formation and fluorescent turn-on in ortho-aminomethylphenylboronic acids. Nature Chemistry, 2019, 11, 768-778.	6.6	131
46	Sortase-mediated fluorescent labeling of CRISPR complexes. Methods in Enzymology, 2019, 616, 43-59.	0.4	10
47	Modeling Boronic Acid Based Fluorescent Saccharide Sensors: Computational Investigation of <scp>d</scp> -Fructose Binding to Dimethylaminomethylphenylboronic Acid. Journal of Chemical Information and Modeling, 2019, 59, 2150-2158.	2.5	7
48	Mathematical Relationships of Individual Stereocenter er Values to dr Values. Journal of Organic Chemistry, 2019, 84, 5922-5926.	1.7	3
49	Reengineering a Reversible Covalent-Bonding Assembly to Optically Detect ee in β-Chiral Primary Alcohols. CheM, 2019, 5, 3196-3206.	5.8	14
50	Modulating multi-functional ERK complexes by covalent targeting of a recruitment site in vivo. Nature Communications, 2019, 10, 5232.	5.8	17
51	Improved Xanthone Synthesis, Stepwise Chemical Redox Cycling. Organic Letters, 2019, 21, 206-209.	2.4	11
52	A Versatile Approach to Noncanonical, Dynamic Covalent Single- and Multi-Loop Peptide Macrocycles for Enhancing Antimicrobial Activity. Journal of the American Chemical Society, 2018, 140, 3768-3774.	6.6	22
53	2,2′-Bipyridine and hydrazide containing peptides for cyclization and complex quaternary structural control. New Journal of Chemistry, 2018, 42, 8577-8582.	1.4	3
54	Selfâ€propagating amplification reactions for molecular detection and signal amplification: Advantages, pitfalls, and challenges. Journal of Physical Organic Chemistry, 2018, 31, e3827.	0.9	34

#	Article	IF	CITATIONS
55	Arresting "Loose Bolt―Internal Conversion from â^'B(OH) ₂ Groups is the Mechanism for Emission Turn-On in <i>ortho</i> -Aminomethylphenylboronic Acid-Based Saccharide Sensors. Journal of the American Chemical Society, 2018, 140, 2348-2354.	6.6	60
56	Teaching through Research: Alignment of Core Chemistry Competencies and Skills within a Multidisciplinary Research Framework. Journal of Chemical Education, 2018, 95, 248-258.	1.1	20
57	Diâ€(2â€picolyl)â€ <i>Nâ€</i> (2â€quinolinylmethyl)amineâ€Functionalized Triarylboron: Lewis Acidity Enhancemo and Fluorogenic Discrimination Between Fluoride and Cyanide in Aqueous Solution. Chemistry - A European Journal, 2018, 24, 9211-9216.	ent 1.7	21
58	Fingerprinting Non-Terran Biosignatures. Astrobiology, 2018, 18, 915-922.	1.5	40
59	Dynamic covalent chemistry enables formation of antimicrobial peptide quaternary assemblies in a completely abiotic manner. Nature Chemistry, 2018, 10, 45-50.	6.6	54
60	Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System. Angewandte Chemie - International Edition, 2018, 57, 1300-1305.	7.2	66
61	Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System. Angewandte Chemie, 2018, 130, 1314-1319.	1.6	23
62	Assembly and Translocation of a CRISPR-Cas Primed Acquisition Complex. Cell, 2018, 175, 934-946.e15.	13.5	74
63	Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nature Biotechnology, 2018, 36, 1076-1082.	9.4	151
64	Hydrogen peroxide production <i>via</i> a redox reaction of <i>N</i> , <i>N</i> ′-dimethyl-2,6-diaza-9,10-anthraquinonediium by addition of bisulfite. Chemical Communications, 2018, 54, 11204-11207.	2.2	6
65	Frontispiece: Di-(2-picolyl)-N- (2-quinolinylmethyl)amine-Functionalized Triarylboron: Lewis Acidity Enhancement and Fluorogenic Discrimination Between Fluoride and Cyanide in Aqueous Solution. Chemistry - A European Journal, 2018, 24, .	1.7	0
66	Photography Coupled with Self-Propagating Chemical Cascades: Differentiation and Quantitation of G- and V-Nerve Agent Mimics via Chromaticity. ACS Central Science, 2018, 4, 854-861.	5.3	36
67	Optical Analysis of Reaction Yield and Enantiomeric Excess: A New Paradigm Ready for Prime Time. Journal of the American Chemical Society, 2018, 140, 10385-10401.	6.6	127
68	Coupling Activityâ€Based Detection, Target Amplification, Colorimetric and Fluorometric Signal Amplification, for Quantitative Chemosensing of Fluoride Generated from Nerve Agents. Chemistry - A European Journal, 2017, 23, 3903-3909.	1.7	31
69	Reversible Macrocyclization of Peptides with a Conjugate Acceptor. Organic Letters, 2017, 19, 1654-1657.	2.4	11
70	Recognition of Viologen Derivatives in Water by <i>N</i> -Alkyl Ammonium Resorcinarene Chlorides. Journal of Organic Chemistry, 2017, 82, 5198-5203.	1.7	17
71	Differentiation and Identification of Cachaça Wood Extracts Using Peptide-Based Receptors and Multivariate Data Analysis. ACS Sensors, 2017, 2, 641-647.	4.0	11
72	An efficient methodology to introduce o-(aminomethyl)phenyl-boronic acids into peptides: alkylation of secondary amines. New Journal of Chemistry, 2017, 41, 126-133.	1.4	7

#	Article	IF	CITATIONS
73	Solution-phase and solid-phase sequential, selective modification of side chains in KDYWEC and KDYWE as models for usage in single-molecule protein sequencing. New Journal of Chemistry, 2017, 41, 462-469.	1.4	19
74	Boronic Acid Mediated Coupling of Catechols and <i>N</i> -Hydroxylamines: A Bioorthogonal Reaction to Label Peptides. Organic Letters, 2017, 19, 3179-3182.	2.4	29
75	An Autoâ€Inductive Cascade for the Optical Sensing of Thiols in Aqueous Media: Application in the Detection of a VX Nerve Agent Mimic. Angewandte Chemie - International Edition, 2017, 56, 9522-9526.	7.2	49
76	An Autoâ€Inductive Cascade for the Optical Sensing of Thiols in Aqueous Media: Application in the Detection of a VX Nerve Agent Mimic. Angewandte Chemie, 2017, 129, 9650-9654.	1.6	14
77	Disaggregation is a Mechanism for Emission Turn-On of <i>ortho</i> -Aminomethylphenylboronic Acid-Based Saccharide Sensors. Journal of the American Chemical Society, 2017, 139, 5568-5578.	6.6	60
78	New Autoinductive Cascade for the Optical Sensing of Fluoride: Application in the Detection of Phosphoryl Fluoride Nerve Agents. Journal of the American Chemical Society, 2017, 139, 4635-4638.	6.6	81
79	Discovery of a potent inhibitor of MELK that inhibits expression of the anti-apoptotic protein Mcl-1 and TNBC cell growth. Bioorganic and Medicinal Chemistry, 2017, 25, 2609-2616.	1.4	26
80	Practical applications of supramolecular chemistry. Chemical Society Reviews, 2017, 46, 2385-2390.	18.7	233
81	Thermodynamic studies of dynamic metal ligands with copper(II), cobalt(II), zinc(II) and nickel(II). Journal of Coordination Chemistry, 2017, 70, 1-9.	0.8	26
82	Serotonin Analogues as Inhibitors of Breast Cancer Cell Growth. ACS Medicinal Chemistry Letters, 2017, 8, 1072-1076.	1.3	21
83	Charged poly(N-isopropylacrylamide) nanogels for use as differential protein receptors in a turbidimetric sensor array. Analyst, The, 2017, 142, 3183-3193.	1.7	34
84	Differential array sensing for cancer cell classification and novelty detection. Organic and Biomolecular Chemistry, 2017, 15, 9866-9874.	1.5	19
85	Rapid Determination of Enantiomeric Excess via NMR Spectroscopy: A Research-Informed Experiment. Journal of Chemical Education, 2017, 94, 79-84.	1.1	20
86	Differential sensing of oils by conjugates of serum albumins and 9,10-distyrylanthracene probes: a cautionary tale. Supramolecular Chemistry, 2017, 29, 308-314.	1.5	6
87	Art, auto-mechanics, and supramolecular chemistry. A merging of hobbies and career. Beilstein Journal of Organic Chemistry, 2016, 12, 362-376.	1.3	1
88	Supramolecular chemistry at the interface of biology, materials and medicine. Beilstein Journal of Organic Chemistry, 2016, 12, 1101-1102.	1.3	1
89	Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor. Nature Chemistry, 2016, 8, 968-973.	6.6	85
90	The Bull–James assembly as a chiral auxiliary and shift reagent in kinetic resolution of alkyne amines by the CuAAC reaction. Organic and Biomolecular Chemistry, 2016, 14, 10778-10782.	1.5	19

#	Article	IF	CITATIONS
91	A racemate-rules effect supramolecular polymer for ee determination of malic acid in the high ee region. Chemical Communications, 2016, 52, 12669-12671.	2.2	25
92	Physical Organic Chemistry by Any Other Name Would Smell as Sweet. Israel Journal of Chemistry, 2016, 56, 38-45.	1.0	1
93	Structural and Thermodynamic Analysis of a Three-Component Assembly Forming <i>ortho</i> -Iminophenylboronate Esters. Journal of Organic Chemistry, 2016, 81, 8319-8330.	1.7	30
94	Four Simultaneously Dynamic Covalent Reactions. Experimental Proof of Orthogonality. Journal of the American Chemical Society, 2016, 138, 10916-10924.	6.6	54
95	Synthesis of alanyl nucleobase amino acids and their incorporation into proteins. Bioorganic and Medicinal Chemistry, 2016, 24, 4177-4187.	1.4	11
96	Synthesis and structural analyses of phenylethynyl-substituted tris(2-pyridylmethyl)amines and their copper(ii) complexes. Dalton Transactions, 2016, 45, 10585-10598.	1.6	3
97	"Click-fluorsâ€ŧ triazole-linked saccharide sensors. Organic Chemistry Frontiers, 2016, 3, 918-928.	2.3	21
98	Model Building Using Linear Free Energy Relationship Parameters–Eliminating Calibration Curves for Optical Analysis of Enantiomeric Excess. Journal of the American Chemical Society, 2016, 138, 8045-8047.	6.6	14
99	Indicator displacement assay using an <i>in situ</i> generated polymeric system in water: exploiting donor–acceptor interactions. Supramolecular Chemistry, 2016, 28, 29-36.	1.5	2
100	From substituent effects to applications: enhancing the optical response of a four-component assembly for reporting ee values. Chemical Science, 2016, 7, 4085-4090.	3.7	20
101	Nextâ€Generation Sequencing as Input for Chemometrics in Differential Sensing Routines. Angewandte Chemie - International Edition, 2015, 54, 6339-6342.	7.2	5
102	A Synergistic Combinatorial and Chiroptical Study of Peptide Catalysts for Asymmetric Baeyer–Villiger Oxidation. Advanced Synthesis and Catalysis, 2015, 357, 2301-2309.	2.1	34
103	Cooperative Binding of Divalent Diamides by <i>N</i> â€Alkyl Ammonium Resorcinarene Chlorides. Chemistry - A European Journal, 2015, 21, 9556-9562.	1.7	23
104	Sensitization of NOâ€Releasing Ruthenium Complexes to Visible Light. Chemistry - A European Journal, 2015, 21, 15554-15563.	1.7	14
105	Chiral Amine Enantiomeric Excess Determination Using Selfâ€Assembled Octahedral Fe(II)â€Imine Complexes. Chirality, 2015, 27, 294-298.	1.3	14
106	Predicting the Composition of Red Wine Blends Using an Array of Multicomponent Peptide-Based Sensors. Molecules, 2015, 20, 9170-9182.	1.7	23
107	Reaction-based Indicator displacement Assay (RIA) for the selective colorimetric and fluorometric detection of peroxynitrite. Chemical Science, 2015, 6, 2963-2967.	3.7	84
108	Grape and wine sensory attributes correlate with pattern-based discrimination of Cabernet Sauvignon wines by a peptidic sensor array. Tetrahedron, 2015, 71, 3095-3099.	1.0	14

#	Article	IF	CITATIONS
109	Differential sensing for the regio- and stereoselective identification and quantitation of glycerides. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3977-86.	3.3	16
110	Dynamic covalent binding and chirality sensing of mono secondary amines with a metal-templated assembly. Tetrahedron, 2015, 71, 3515-3521.	1.0	25
111	Recent Advances in Supramolecular Analytical Chemistry Using Optical Sensing. Chemical Reviews, 2015, 115, 7840-7892.	23.0	793
112	Mechanistic studies on covalent assemblies of metal-mediated hemi-aminal ethers. Chemical Science, 2015, 6, 158-164.	3.7	26
113	Chromogenic/Fluorogenic Ensemble Chemosensing Systems. Chemical Reviews, 2015, 115, 7893-7943.	23.0	351
114	Expanded Porphyrin-Anion Supramolecular Assemblies: Environmentally Responsive Sensors for Organic Solvents and Anions. Journal of the American Chemical Society, 2015, 137, 7769-7774.	6.6	152
115	Dynamic Aminalâ€Based TPA Ligands. Chemistry - A European Journal, 2015, 21, 8207-8213.	1.7	21
116	Quantification of a Pharmacodynamic ERK End Point in Melanoma Cell Lysates: Toward Personalized Precision Medicine. ACS Medicinal Chemistry Letters, 2015, 6, 47-52.	1.3	14
117	Chapter 2. Design and Synthesis of Synthetic Receptors for Biomolecule Recognition. Monographs in Supramolecular Chemistry, 2015, , 39-85.	0.2	8
118	Characterization of a Fluorescent Probe for Imaging Nitric Oxide. Journal of Vascular Research, 2014, 51, 68-79.	0.6	8
119	The use of principal component analysis and discriminant analysis in differential sensing routines. Chemical Society Reviews, 2014, 43, 70-84.	18.7	289
120	Rapid determination of enantiomeric excess of α-chiral aldehydes using circular dichroism spectroscopy. Tetrahedron, 2014, 70, 1357-1362.	1.0	14
121	Exploring naphthyl-carbohydrazides as inhibitors of influenza A viruses. European Journal of Medicinal Chemistry, 2014, 71, 81-90.	2.6	20
122	Exploitation of the majority rules effect for the accurate measurement of high enantiomeric excess values using CD spectroscopy. Chemical Communications, 2014, 50, 15330-15332.	2.2	25
123	Synthesis and biological evaluation of pyrido[2,3-d]pyrimidine-2,4-dione derivatives as eEF-2K inhibitors. Bioorganic and Medicinal Chemistry, 2014, 22, 4910-4916.	1.4	55
124	Rapid Optical Methods for Enantiomeric Excess Analysis: From Enantioselective Indicator Displacement Assays to Exciton-Coupled Circular Dichroism. Accounts of Chemical Research, 2014, 47, 2212-2221.	7.6	164
125	The effect of alkylation, protonation, and hydroxyl group substitution on reversible alcohol and water addition to 2- and 4-formyl pyridine derivatives. RSC Advances, 2014, 4, 28893-28900.	1.7	10
126	Rhodiumâ€Catalyzed Asymmetric Hydrogenation of Unprotected NH Imines Assisted by a Thiourea. Angewandte Chemie - International Edition, 2014, 53, 8467-8470.	7.2	117

#	Article	IF	CITATIONS
127	Differential Sensing of MAP Kinases Using SOXâ€Peptides. Angewandte Chemie - International Edition, 2014, 53, 14064-14068.	7.2	37
128	Studies of Reversible Conjugate Additions. European Journal of Organic Chemistry, 2013, 2013, 5017-5021.	1.2	46
129	Array sensing using optical methods for detection of chemical and biological hazards. Chemical Society Reviews, 2013, 42, 8596.	18.7	275
130	A selective and sensitive chromogenic and fluorogenic detection of a sulfur mustard simulant. Chemical Science, 2013, 4, 4292.	3.7	68
131	In-Situ Generation of Differential Sensors that Fingerprint Kinases and the Cellular Response to Their Expression. Journal of the American Chemical Society, 2013, 135, 14814-14820.	6.6	69
132	On the rate of boronate ester formation in <i>ortho</i> -aminomethyl-functionalised phenyl boronic acids. Supramolecular Chemistry, 2013, 25, 79-86.	1.5	34
133	Oxoanion recognition by benzene-based tripodal pyrrolic receptors. Supramolecular Chemistry, 2012, 24, 72-76.	1.5	19
134	Pattern-based discrimination of organic acids and red wine varietals by arrays of synthetic receptors. Supramolecular Chemistry, 2012, 24, 143-148.	1.5	25
135	Discrimination of vicinal-diol-containing flavonoids and black teas by arrays of host–indicator ensembles. Supramolecular Chemistry, 2012, 24, 520-525.	1.5	12
136	Circular dichroism of multi-component assemblies for chiral amine recognition and rapid ee determination. Chemical Science, 2012, 3, 156-161.	3.7	58
137	In Situ Assembly of Octahedral Fe(II) Complexes for the Enantiomeric Excess Determination of Chiral Amines Using Circular Dichroism Spectroscopy. Journal of the American Chemical Society, 2012, 134, 4398-4407.	6.6	124
138	Correlating Sterics Parameters and Diastereomeric Ratio Values for a Multicomponent Assembly To Predict Exciton-Coupled Circular Dichroism Intensity and Thereby Enantiomeric Excess of Chiral Secondary Alcohols. Journal of the American Chemical Society, 2012, 134, 7126-7134.	6.6	54
139	A Mechanically Controlled Indicator Displacement Assay. Angewandte Chemie - International Edition, 2012, 51, 9643-9646.	7.2	70
140	An Exciton-Coupled Circular Dichroism Protocol for the Determination of Identity, Chirality, and Enantiomeric Excess of Chiral Secondary Alcohols. Journal of the American Chemical Society, 2012, 134, 7117-7125.	6.6	129
141	Exploration of plasticizer and plastic explosive detection and differentiation with serum albumin cross-reactive arrays. Chemical Science, 2012, 3, 1773.	3.7	28
142	Rapid determination of enantiomeric excess: a focus on optical approaches. Chemical Society Reviews, 2012, 41, 448-479.	18.7	288
143	Enantio―and Chemoselective Differentiation of Protected αâ€Amino Acids and βâ€Homoamino Acids with a Single Copper(II) Host. Chemistry - A European Journal, 2012, 18, 8064-8069.	1.7	47
144	Discrimination and Classification of Ginsenosides and Ginsengs Using Bisâ€Boronic Acid Receptors in Dynamic Multicomponent Indicator Displacement Sensor Arrays. Chemistry - A European Journal, 2012, 18, 1102-1110.	1.7	55

#	Article	IF	CITATIONS
145	Chemical Functionalization of Oligodeoxynucleotides with Multiple Boronic Acids for the Polyvalent Binding of Saccharides. Bioconjugate Chemistry, 2011, 22, 388-396.	1.8	20
146	Rapid Determination of Enantiomeric Excess of α-Chiral Cyclohexanones Using Circular Dichroism Spectroscopy. Organic Letters, 2011, 13, 2298-2301.	2.4	40
147	Dynamic multi-component covalent assembly for the reversible binding of secondary alcohols and chirality sensing. Nature Chemistry, 2011, 3, 943-948.	6.6	167
148	A Simple Method for the Determination of Enantiomeric Excess and Identity of Chiral Carboxylic Acids. Journal of the American Chemical Society, 2011, 133, 13746-13752.	6.6	148
149	Discrimination of flavonoids and red wine varietals by arrays of differential peptidic sensors. Chemical Science, 2011, 2, 439-445.	3.7	86
150	A general approach to differential sensing using synthetic molecular receptors. Current Opinion in Chemical Biology, 2010, 14, 685-692.	2.8	110
151	Chemosensory models: approaches and applications of differential sensing. Current Opinion in Chemical Biology, 2010, 14, 683-684.	2.8	32
152	A fluorescence-based cyclodextrin sensor to detect nitroaromatic explosives. Supramolecular Chemistry, 2010, 22, 65-71.	1.5	41
153	Algorithms for the determination of binding constants and enantiomeric excess in complex host : guest equilibria using optical measurements. New Journal of Chemistry, 2010, 34, 348.	1.4	110
154	A Highly Selective Low-Background Fluorescent Imaging Agent for Nitric Oxide. Journal of the American Chemical Society, 2010, 132, 13114-13116.	6.6	222
155	A Facile Circular Dichroism Protocol for Rapid Determination of Enantiomeric Excess and Concentration of Chiral Primary Amines. Chemistry - A European Journal, 2010, 16, 227-232.	1.7	117
156	Analysis of Citric Acid in Beverages: Use of an Indicator Displacement Assay. Journal of Chemical Education, 2010, 87, 832-835.	1.1	15
157	A general protocol for creating high-throughput screening assays for reaction yield and enantiomeric excess applied to hydrobenzoin. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10487-10492.	3.3	81
158	Probing Intramolecular Bâ^'N Interactions in <i>Ortho</i> -Aminomethyl Arylboronic Acids. Journal of Organic Chemistry, 2009, 74, 4055-4060.	1.7	95
159	Pattern-Based Recognition for the Rapid Determination of Identity, Concentration, and Enantiomeric Excess of Subtly Different Threo Diols. Journal of the American Chemical Society, 2009, 131, 13125-13131.	6.6	88
160	Synthesis of a Novel Bisphosphonium Salt Based on 2,2′-Bis(diphenylphosphino)-1,1′-binaphthyl (Binap). Organometallics, 2008, 27, 3608-3610.	1.1	22
161	Rapid Enantiomeric Excess and Concentration Determination Using Simple Racemic Metal Complexes. Organic Letters, 2008, 10, 5167-5170.	2.4	38
162	High-Throughput Screening of Identity, Enantiomeric Excess, and Concentration Using MLCT Transitions in CD Spectroscopy. Journal of the American Chemical Society, 2008, 130, 9232-9233.	6.6	116

#	Article	IF	CITATIONS
163	Pattern recognition based identification of nitrated explosives. New Journal of Chemistry, 2008, 32, 848.	1.4	26
164	Luminescent assays for ketones and aldehydes employing catalytic signal amplification. New Journal of Chemistry, 2007, 31, 729.	1.4	7
165	Supramolecular Analytical Chemistry. Journal of Organic Chemistry, 2007, 72, 687-699.	1.7	471
166	Boronic Acid Based Peptidic Receptors for Pattern-Based Saccharide Sensing in Neutral Aqueous Media, an Application in Real-Life Samples. Journal of the American Chemical Society, 2007, 129, 13575-13583.	6.6	173
167	Two Methods for the Determination of Enantiomeric Excess and Concentration of a Chiral Sample with a Single Spectroscopic Measurement. Chemistry - A European Journal, 2007, 13, 99-104.	1.7	50
168	Detection of chemical warfare simulants by phosphorylation of a coumarin oximate. Chemical Communications, 2006, , 3886.	2.2	128
169	A Structural Investigation of the Nâ^'B Interaction in ano-(N,N-Dialkylaminomethyl)arylboronate System. Journal of the American Chemical Society, 2006, 128, 1222-1232.	6.6	306
170	Differential receptor arrays and assays for solution-based molecular recognition. Chemical Society Reviews, 2006, 35, 14-28.	18.7	445
171	Indicator–displacement assays. Coordination Chemistry Reviews, 2006, 250, 3118-3127.	9.5	619
172	Signal Amplification by Allosteric Catalysis. Angewandte Chemie - International Edition, 2006, 45, 1190-1196.	7.2	139
173	Smart microplates: integrated photodiodes for detecting bead-based chemiluminescent reactions. , 2006, , .		1
174	Differential Receptors Create Patterns That Distinguish Various Proteins. Angewandte Chemie - International Edition, 2005, 44, 6375-6378.	7.2	130
175	Heavy metal analysis using a Heck-catalyzed cyclization to create coumarin. Journal of Materials Chemistry, 2005, 15, 2815.	6.7	35
176	Colorimetric Enantiodiscrimination of α-Amino Acids in Protic Media. Journal of the American Chemical Society, 2005, 127, 7986-7987.	6.6	180
177	Colorimetric detection of chemical warfare simulants. New Journal of Chemistry, 2005, 29, 1469.	1.4	99
178	Guidelines in Implementing Enantioselective Indicator-Displacement Assays for α-Hydroxycarboxylates and Diols. Journal of the American Chemical Society, 2005, 127, 4260-4269.	6.6	175
179	FRET induced by an â€~allosteric' cycloaddition reaction regulated with exogenous inhibitor and effectors. Tetrahedron, 2004, 60, 7267-7275.	1.0	50
180	Catalytic Signal Amplification Using a Heck Reaction. An Example in the Fluorescence Sensing of Cu(II). Journal of the American Chemical Society, 2004, 126, 14682-14683.	6.6	233

#	Article	IF	CITATIONS
181	A farâ€red fluorescent contrast agent to image epidermal growth factor receptor expression. Photochemistry and Photobiology, 2004, 79, 272-279.	1.3	3
182	Title is missing!. Angewandte Chemie, 2003, 115, 2116-2118.	1.6	22
183	Differential Receptors Create Patterns Diagnostic for ATP and GTP. Journal of the American Chemical Society, 2003, 125, 1114-1115.	6.6	214
184	Synthesis and Evaluation of a Cyclophane Receptor for Acetic Acid. Supramolecular Chemistry, 2002, 14, 511-517.	1.5	10
185	Mimicking the Mammalian Sense of Taste Through Single-Component and Multicomponent Analyte Sensors. ACS Symposium Series, 2002, , 276-288.	0.5	3
186	Stochastic Sensing of IP3 Has Far-Reaching Consequences. Chemistry and Biology, 2002, 9, 779-780.	6.2	5
187	pKa Values and Geometries of Secondary and Tertiary Amines Complexed to Boronic AcidsImplications for Sensor Design. Organic Letters, 2001, 3, 1311-1314.	2.4	181
188	Development of Multianalyte Sensor Arrays Composed of Chemically Derivatized Polymeric Microspheres Localized in Micromachined Cavities. Journal of the American Chemical Society, 2001, 123, 2559-2570.	6.6	188
189	Teaching Old Indicators New Tricks. Accounts of Chemical Research, 2001, 34, 963-972.	7.6	749
190	Metal triggered fluorescence sensing of citrate using a synthetic receptor. Perkin Transactions II RSC, 2001, , 315-323.	1.1	83
191	A cascade of reactions involving anchimeric assistance leads to a highly 'crowded' hexa(alkylcarboxy)benzeneElectronic supplementary data (ESI) available: general methods, materials and X-ray data. See http://www.rsc.org/suppdata/cc/b1/b105569k/. Chemical Communications, 2001, , 2436-2437.	2.2	3
192	Sensing A Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors. Angewandte Chemie - International Edition, 2001, 40, 3118-3130.	7.2	515
193	Teaching Old Indicators New Tricks: A Colorimetric Chemosensing Ensemble for Tartrate/Malate in Beverages. Angewandte Chemie - International Edition, 1999, 38, 3666-3669.	7.2	306
194	Teaching Old Indicators New Tricks: A Colorimetric Chemosensing Ensemble for Tartrate/Malate in Beverages. , 1999, 38, 3666.		2
195	A Chemosensor for Citrate in Beverages. Angewandte Chemie - International Edition, 1998, 37, 649-652.	7.2	288
196	Solution-Based Analysis of Multiple Analytes by a Sensor Array:Â Toward the Development of an "Electronic Tongue― Journal of the American Chemical Society, 1998, 120, 6429-6430.	6.6	217
197	A Chemosensor for Citrate in Beverages. , 1998, 37, 649.		1
198	A Synthetic Receptor Selective for Citrate. Angewandte Chemie International Edition in English, 1997, 36, 862-865.	4.4	230

#	Article	IF	CITATIONS
199	Ein synthetischer Citratâ€selektiver Rezeptor. Angewandte Chemie, 1997, 109, 911-914.	1.6	41
200	NON-AQUEOUS TITRATIONS AS A TOOL IN THE STUDY OF MOLECULAR RECOGNITION PHENOMENA. USES IN DISTINGUISHING HYDROGEN BONDING FROM PROTON TRANSFER, THE MEASUREMENT OF COMPLEX INDUCED pKa SHIFTS, AND THE ABILITY TO DISTINGUISH THE CATALYTIC ROLES OF GENERAL ACIDS AND BASES. Journal of Physical Organic Chemistry, 1997, 10, 396-404.	0.9	11
201	Facile Stereoselective Syntheses of Four of the Six 1, 2, 3, 4-Cyclohexanetetrols: Increasing the Accessibility of Cyclitols for Probing the Molecular Recognition of Saccharides. Synthetic Communications, 1994, 24, 2757-2764.	1.1	6
202	Strategies for phosphodiester complexation and cleavage. Supramolecular Chemistry, 1993, 1, 201-208.	1.5	25
203	Solid-State Columns Made from Twisted, Self-Complementary Terpyridine Units. Angewandte Chemie International Edition in English, 1992, 31, 1244-1246.	4.4	14