Arantxa Arbe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4855219/publications.pdf

Version: 2024-02-01

50276 79698 6,925 190 46 citations h-index papers

g-index 192 192 192 3663 docs citations times ranked citing authors all docs

73

#	Article	IF	CITATIONS
1	Disentangling Component Dynamics in an All-Polymer Nanocomposite Based on Single-Chain Nanoparticles by Quasielastic Neutron Scattering. Macromolecules, 2022, 55, 2320-2332.	4.8	5
2	High magnetization FeCo nanoparticles for magnetorheological fluids with enhanced response. Soft Matter, 2021, 17, 840-852.	2.7	18
3	Selfâ€Reporting of Folding and Aggregation by Orthogonal Hantzsch Luminophores Within a Single Polymer Chain. Angewandte Chemie - International Edition, 2021, 60, 3534-3539.	13.8	13
4	Selfâ€Reporting of Folding and Aggregation by Orthogonal Hantzsch Luminophores Within a Single Polymer Chain. Angewandte Chemie, 2021, 133, 3576-3581.	2.0	4
5	Disentangling Self-Atomic Motions in Polyisobutylene by Molecular Dynamics Simulations. Polymers, 2021, 13, 670.	4.5	1
6	Crowding Effects on the Structure and Dynamics of the Intrinsically Disordered Nuclear Chromatin Protein NUPR1. Frontiers in Molecular Biosciences, 2021, 8, 684622.	3.5	17
7	Dynamic Processes and Mechanisms Involved in Relaxations of Single-Chain Nano-Particle Melts. Polymers, 2021, 13, 2316.	4.5	5
8	Advances in the Multi-Orthogonal Folding of Single Polymer Chains into Single-Chain Nanoparticles. Polymers, 2021, 13, 293.	4.5	10
9	Collective Motions and Mechanical Response of a Bulk of Single-Chain Nano-Particles Synthesized by Click-Chemistry. Polymers, 2021, 13, 50.	4.5	7
10	Unraveling the coherent dynamic structure factor of liquid water at the mesoscale by molecular dynamics simulations. Journal of Chemical Physics, 2021, 155, 244509.	3.0	11
11	Modeling the high frequency mechanical relaxation of simplified industrial polymer mixtures using dielectric relaxation results. Polymer, 2020, 187, 122051.	3.8	6
12	Cyclic Polyethylene Glycol as Nanoparticle Surface Ligand. ACS Macro Letters, 2020, 9, 1604-1610.	4.8	10
13	Concentration Fluctuations and Nanosegregation in a Simplified Industrial Blend with Large Dynamic Asymmetry. Macromolecules, 2020, 53, 7150-7160.	4.8	6
14	Structure and Dynamics of Irreversible Single-Chain Nanoparticles in Dilute Solution. A Neutron Scattering Investigation. Macromolecules, 2020, 53, 8068-8082.	4.8	7
15	Insight into the Structure and Dynamics of Polymers by Neutron Scattering Combined with Atomistic Molecular Dynamics Simulations. Polymers, 2020, 12, 3067.	4.5	17
16	How Does Microstructural Design Affect the Dynamics and Rheology of Segmented Polyurethanes?. Macromolecules, 2020, 53, 5381-5398.	4.8	18
17	Tube Dilation in Isofrictional Polymer Blends Based on Polyisoprene with Different Topologies: Combination of Dielectric and Rheological Spectroscopy, Pulsed-Field-Gradient NMR, and Neutron Spin Echo (NSE) Techniques. Macromolecules, 2020, 53, 5919-5936.	4.8	8
18	Single-chain nanoparticles: opportunities provided by internal and external confinement. Materials Horizons, 2020, 7, 2292-2313.	12.2	72

#	Article	IF	CITATIONS
19	Melts of single-chain nanoparticles: A neutron scattering investigation. Journal of Applied Physics, 2020, 127, .	2.5	11
20	Human importin $\hat{l}\pm 3$ and its N-terminal truncated form, without the importin- \hat{l}^2 -binding domain, are oligomeric species with a low conformational stability in solution. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129609.	2.4	11
21	Coherent structural relaxation of water from meso- to intermolecular scales measured using neutron spectroscopy with polarization analysis. Physical Review Research, 2020, 2, .	3.6	26
22	Mechanical and Morphological Properties of Waterborne ABA Hard-Soft-Hard Block Copolymers Synthesized by Means of RAFT Miniemulsion Polymerization. Polymers, 2019, 11, 1259.	4.5	6
23	Direct Observation of Dynamic Tube Dilation in Entangled Polymer Blends: A Combination of Neutron Scattering and Dielectric Techniques. Physical Review Letters, 2019, 123, 187802.	7.8	8
24	Mesoscale Dynamics in Melts of Single-Chain Polymeric Nanoparticles. Macromolecules, 2019, 52, 6935-6942.	4.8	17
25	Effect of Molecular Crowding on Conformation and Interactions of Single-Chain Nanoparticles. Macromolecules, 2019, 52, 4295-4305.	4.8	16
26	Brushes of elastic single-chain nanoparticles on flat surfaces. Polymer, 2019, 169, 207-214.	3.8	6
27	Facile Access to Completely Deuterated Singleâ€Chain Nanoparticles Enabled by Intramolecular Azide Photodecomposition. Macromolecular Rapid Communications, 2019, 40, 1900046.	3.9	15
28	Influence of Chain Primary Structure and Topology (Branching) on Crystallization and Thermal Properties: The Case of Polysulfides. Macromolecules, 2019, 52, 2093-2104.	4.8	13
29	Influence of Chain Topology (Cyclic versus Linear) on the Nucleation and Isothermal Crystallization of Poly(<scp>-lactide) and Poly(<scp>d</scp>-lactide). Macromolecules, 2018, 51, 1718-1732.</scp>	4.8	68
30	Crowding the Environment of Single-Chain Nanoparticles: A Combined Study by SANS and Simulations. Macromolecules, 2018, 51, 1573-1585.	4.8	31
31	Effect of chain stiffness on the structure of single-chain polymer nanoparticles. Journal of Physics Condensed Matter, 2018, 30, 034001.	1.8	15
32	Insights into the Network Structure of Cross-Linked Polymers Synthesized via Miniemulsion Nitroxide-Mediated Radical Polymerization. Macromolecules, 2018, 51, 9740-9748.	4.8	17
33	The C Terminus of the Ribosomal-Associated Protein LrtA is an Intrinsically Disordered Oligomer. International Journal of Molecular Sciences, 2018, 19, 3902.	4.1	2
34	Relaxation Processes in Liquids and Glass-Forming Systems: What Can We Learn by Comparing Neutron Scattering and Dielectric Spectroscopy Results?. Advances in Dielectrics, 2018, , 247-277.	1.2	1
35	Local Domain Size in Single-Chain Polymer Nanoparticles. ACS Omega, 2018, 3, 8648-8654.	3.5	17
36	Applying Polymer Blend Dynamics Concepts to a Simplified Industrial System. A Combined Effort by Dielectric Spectroscopy and Neutron Scattering. Macromolecules, 2018, 51, 6692-6706.	4.8	11

#	Article	IF	Citations
37	Ultrafiltration of single-chain polymer nanoparticles through nanopores and nanoslits. Polymer, 2018, 148, 61-67.	3.8	9
38	Folding Single Chains to Single-Chain Nanoparticles via Reversible Interactions: What Size Reduction Can One Expect?. Macromolecules, 2017, 50, 1732-1739.	4.8	49
39	The Role of the Topological Constraints in the Chain Dynamics in All-Polymer Nanocomposites. Macromolecules, 2017, 50, 1719-1731.	4.8	31
40	Poly(butylene succinate-ran-ε-caprolactone) copolyesters: Enzymatic synthesis and crystalline isodimorphic character. European Polymer Journal, 2017, 95, 795-808.	5.4	41
41	Relaxations and Relaxor-Ferroelectric-Like Response of Nanotubularly Confined Poly(vinylidene) Tj ETQq1 1 0.784	1314 rgBT 6.7	/Oyerlock 10
42	Acrylic-based composite latexes containing nano-sized liquid crystalline domains. Polymer, 2017, 108, 288-300.	3.8	5
43	Supramolecular Self-Assembly of Monocarboxydecyl-Terminated Dimethylsiloxane Oligomer. Macromolecules, 2017, 50, 8688-8697.	4.8	7
44	Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 27739-27754.	2.8	10
45	Size of Elastic Single-Chain Nanoparticles in Solution and on Surfaces. Macromolecules, 2017, 50, 6323-6331.	4.8	23
46	Plasticization and cocrystallization in L <scp>LDPE</scp> /wax blends. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1469-1482.	2.1	24
47	A Solventâ€Based Strategy for Tuning the Internal Structure of Metalloâ€Folded Singleâ€Chain Nanoparticles. Macromolecular Rapid Communications, 2016, 37, 1060-1065.	3.9	39
48	Structure and component dynamics in binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with water and tetrahydrofuran: A diffraction, calorimetric, and dielectric spectroscopy study. Journal of Chemical Physics, 2016, 144, 154903.	3.0	5
49	Dielectric relaxation analysis of hybrid acrylic–polyurethane gels. Materials Today Communications, 2016, 8, 100-107.	1.9	1
50	Structure and dynamics of single-chain nano-particles in solution. Polymer, 2016, 105, 532-544.	3.8	44
51	Application of SSA thermal fractionation and X-ray diffraction to elucidate comonomer inclusion or exclusion from the crystalline phases in poly(butylene succinate-ran-butylene azelate) random copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2346-2358.	2.1	25
52	Synthesis and Characterization of Double Crystalline Cyclic Diblock Copolymers of Poly(εâ€caprolactone) and Poly(<scp> < scp> < scp>d< scp>)â€lactide) (<i>c< i>(PCLâ€<i>b< i>―PL(D)LA)). Macromolecular Rapid Communications, 2016, 37, 1676-1681.</i></i></scp>	3.9	22
53	An unexpected route to aldehyde-decorated single-chain nanoparticles from azides. Polymer Chemistry, 2016, 7, 6570-6574.	3.9	12
54	The role of PLLA-g-montmorillonite nanohybrids in the acceleration of the crystallization rate of a commercial PLA. CrystEngComm, 2016, 18, 9334-9344.	2.6	19

#	Article	IF	Citations
55	A Useful Methodology for Determining the Compaction Degree of Singleâ€Chain Nanoparticles by Conventional SEC. Particle and Particle Systems Characterization, 2016, 33, 373-381.	2.3	10
56	Phase behavior of side-chain liquid-crystalline polymers containing biphenyl mesogens with different spacer lengths synthesized <i>via</i> miniemulsion polymerization. Polymer Chemistry, 2016, 7, 4736-4750.	3.9	20
57	Role of Dynamic Asymmetry on the Collective Dynamics of Comblike Polymers: Insights from Neutron Spin-Echo Experiments and Coarse-Grained Molecular Dynamics Simulations. Macromolecules, 2016, 49, 4989-5000.	4.8	6
58	Sequential crystallization and morphology of triple crystalline biodegradable PEO-b-PCL-b-PLLA triblock terpolymers. RSC Advances, 2016, 6, 4739-4750.	3.6	19
59	Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions. Journal of Physical Chemistry Letters, 2016, 7, 838-844.	4.6	64
60	Single Chain Dynamic Structure Factor of Linear Polymers in an All-Polymer Nano-Composite. Macromolecules, 2016, 49, 2354-2364.	4.8	36
61	Efficient Synthesis of Single-Chain Globules Mimicking the Morphology and Polymerase Activity of Metalloenzymes. Macromolecular Rapid Communications, 2015, 36, 1592-1597.	3.9	52
62	Collective dynamics of glass-forming polymers at intermediate length scales. EPJ Web of Conferences, 2015, 83, 01001.	0.3	8
63	How Composition Determines the Properties of Isodimorphic Poly(butylene) Tj ETQq1 1 0.784314 rgBT /Overlock Crystalline Random Copolymers. Macromolecules, 2015, 48, 43-57.	10 Tf 50 4 4.8	127 Td (suc 105
64	Nanostructuration by Self-Assembly in $\langle i \rangle N \langle i \rangle$ -Alkyl Thiazolium and Triazolium Side-Chain Polymethacrylates. Macromolecules, 2015, 48, 7180-7193.	4.8	20
65	DETERMINATION OF FILLER STRUCTURE IN SILICA-FILLED SBR COMPOUNDS BY MEANS OF SAXS AND AFM. Rubber Chemistry and Technology, 2015, 88, 690-710.	1.2	11
66	Influence of Solvent on Poly(2-(Dimethylamino)Ethyl Methacrylate) Dynamics in Polymer-Concentrated Mixtures: A Combined Neutron Scattering, Dielectric Spectroscopy, and Calorimetric Study. Macromolecules, 2015, 48, 6724-6735.	4.8	16
67	Efficient Route to Compact Single-Chain Nanoparticles: Photoactivated Synthesis via Thiol–Yne Coupling Reaction. Macromolecules, 2014, 47, 8270-8280.	4.8	77
68	Effect of polar solvents on the crystalline phase of polyamides. Polymer, 2014, 55, 2867-2881.	3.8	17
69	Collective Features in Polyisobutylene. A Study of the Static and Dynamic Structure Factor by Molecular Dynamics Simulations. Macromolecules, 2014, 47, 447-459.	4.8	15
70	Microscopic Dynamics in Nanocomposites of Poly(ethylene oxide) and Poly(methyl methacrylate) Soft Nanoparticles: A Quasi-Elastic Neutron Scattering Study. Macromolecules, 2014, 47, 304-315.	4.8	28
71	How Far Are Single-Chain Polymer Nanoparticles in Solution from the Globular State?. ACS Macro Letters, 2014, 3, 767-772.	4.8	152
72	Investigation of a Nanocomposite of 75 wt % Poly(methyl methacrylate) Nanoparticles with 25 wt % Poly(ethylene oxide) Linear Chains: A Quasielatic Neutron Scattering, Calorimetric, and WAXS Study. Macromolecules, 2014, 47, 3005-3016.	4.8	18

#	Article	IF	Citations
73	Metallo-Folded Single-Chain Nanoparticles with Catalytic Selectivity. ACS Macro Letters, 2014, 3, 439-443.	4.8	130
74	Component dynamics in nanostructured PI-PDMS diblock copolymers with PI segregated in lamellas, cylinders, and spheres. Colloid and Polymer Science, 2014, 292, 1863-1876.	2.1	13
75	Dynamic study of polystyrene-block-poly(4-vinylpyridine) copolymer in bulk and confined in cylindrical nanopores. Polymer, 2014, 55, 4057-4066.	3.8	19
76	Endowing Single-Chain Polymer Nanoparticles with Enzyme-Mimetic Activity. ACS Macro Letters, 2013, 2, 775-779.	4.8	129
77	Modeling the collective relaxation time of glass-forming polymers at intermediate length scales: Application to polyisobutylene. Journal of Chemical Physics, 2013, 139, 044906.	3.0	26
78	Recent progress on polymer dynamics by neutron scattering: From simple polymers to complex materials. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 87-113.	2.1	56
79	Advantages of Orthogonal Folding of Single Polymer Chains to Soft Nanoparticles. Macromolecules, 2013, 46, 9748-9759.	4.8	89
80	"Michael―Nanocarriers Mimicking Transient-Binding Disordered Proteins. ACS Macro Letters, 2013, 2, 491-495.	4.8	106
81	Effect of Nanoconfinement on Polymer Dynamics: Surface Layers and Interphases. Physical Review Letters, 2013, 110, 108303.	7.8	154
82	Dynamics of Poly(butylene oxide) Well above the Glass Transition. A Fully Atomistic Molecular Dynamics Simulation Study. Macromolecules, 2013, 46, 1678-1685.	4.8	10
83	Design and Preparation of Singleâ€Chain Nanocarriers Mimicking Disordered Proteins for Combined Delivery of Dermal Bioactive Cargos. Macromolecular Rapid Communications, 2013, 34, 1681-1686.	3.9	82
84	Applicability of mode-coupling theory to polyisobutylene: A molecular dynamics simulation study. Physical Review E, 2013, 88, 042302.	2.1	13
85	Publisher's Note: Effect of Nanoconfinement on Polymer Dynamics: Surface Layers and Interphases [Phys. Rev. Lett. 110 < /b>, 108303 (2013)]. Physical Review Letters, 2013, 110, .	7.8	16
86	Nanophase Separation and Exotic Dynamic Behavior in Comb-Like Polymers. Journal of the Physical Society of Japan, 2013, 82, SA015.	1.6	3
87	Quasielastic Neutron Scattering Study on the Dynamics of Poly(alkylene oxide)s. Macromolecules, 2012, 45, 4394-4405.	4.8	40
88	Unexpected PDMS Behavior in Segregated Cylindrical and Spherical Nanophases of PS–PDMS Asymmetric Diblock Copolymers. Macromolecules, 2012, 45, 491-502.	4.8	17
89	Short and Intermediate Range Order in Poly(alkylene oxide)s. A Neutron Diffraction and Molecular Dynamics Simulation Study. Macromolecules, 2012, 45, 7293-7303.	4.8	29
90	Dynamics of Water Absorbed in Polyamides. Macromolecules, 2012, 45, 1676-1687.	4.8	61

#	Article	IF	Citations
91	Neutron Scattering and X-ray Investigation of the Structure and Dynamics of Poly(ethyl) Tj ETQq1 1 0.784314 rgB	T ₄ /Overloc	k_10 Tf 50
92	Component dynamics in polyvinylpyrrolidone concentrated aqueous solutions. Journal of Chemical Physics, 2012, 137, 084902.	3.0	36
93	Positron annihilation and relaxation dynamics from dielectric spectroscopy: poly(vinylmethylether). Journal of Physics Condensed Matter, 2012, 24, 155104.	1.8	13
94	Neutron scattering and molecular dynamics simulations: synergetic tools to unravel structure and dynamics in polymers. Soft Matter, 2012, 8, 8257.	2.7	35
95	Complex polymers. Neutron Scattering Applications and Techniques, 2012, , 103-121.	0.2	1
96	Glassy Dynamics of Polystyrene by Quasielastic Neutron Scattering. Macromolecules, 2011, 44, 3161-3168.	4.8	20
97	Chain Dynamics of Unentangled Poly(ethylene- <i>alt</i> propylene) Melts by Means of Neutron Scattering and Fully Atomistic Molecular Dynamics Simulations. Macromolecules, 2011, 44, 3129-3139.	4.8	16
98	Structure and Dynamics of Self-Assembled Comb Copolymers: Comparison between Simulations of a Generic Model and Neutron Scattering Experiments. Macromolecules, 2011, 44, 1695-1706.	4.8	27
99	Dynamical Properties of Plasticizer in Polyvinyl Acetate., 2011,,.		O
100	Study of the structure and dynamics of poly(vinyl pyrrolidone) by molecular dynamics simulations validated by quasielastic neutron scattering and x-ray diffraction experiments. Journal of Chemical Physics, 2011, 134, 054904.	3.0	21
101	Positron annihilation and relaxation dynamics from dielectric spectroscopy and nuclear magnetic resonance: <i>Cis–trans-</i> 1,4-poly(butadiene). Journal of Chemical Physics, 2011, 134, 164507.	3.0	19
102	Quasielastic neutron scattering study of hydrogen motions in an aqueous poly(vinyl methyl ether) solution. Journal of Chemical Physics, 2011, 134, 204906.	3.0	37
103	Neutron Scattering and Polymer Dynamics. Neutron News, 2010, 21, 11-14.	0.2	1
104	Dynamics in Poly(<i>n</i> -alkyl methacrylates): A Neutron Scattering, Calorimetric, and Dielectric Study. Macromolecules, 2010, 43, 3107-3119.	4.8	53
105	Direct Observation of Confined Single Chain Dynamics by Neutron Scattering. Physical Review Letters, 2010, 104, 197801.	7.8	123
106	Characterization of the "simple-liquid―state in a polymeric system: Coherent and incoherent scattering functions. Physical Review E, 2009, 80, 041805.	2.1	24
107	Atomic motions in poly(vinyl methyl ether): A combined study by quasielastic neutron scattering and molecular dynamics simulations in the light of the mode coupling theory. Journal of Chemical Physics, 2009, 131, 204901.	3.0	23
108	Quasielastic neutron scattering in soft matter. Current Opinion in Colloid and Interface Science, 2009, 14, 381-390.	7.4	97

#	Article	IF	Citations
109	Quasielastic Neutron Scattering and Molecular Dynamics Simulation Study on the Structure Factor of Poly(ethylene- <i>alt</i> propylene). Macromolecules, 2009, 42, 8271-8285.	4.8	24
110	Neutron scattering study of the dynamics of a polymer melt under nanoscopic confinement. Journal of Chemical Physics, 2009, 131, 174901.	3.0	62
111	Study of the dynamics of poly(ethylene oxide) by combining molecular dynamic simulations and neutron scattering experiments. Journal of Chemical Physics, 2009, 130, 094908.	3.0	7 3
112	Atomic motions in the $\hat{l}\pm\hat{l}^2$ -merging region of 1,4-polybutadiene: A molecular dynamics simulation study. Journal of Chemical Physics, 2008, 128, 224905.	3.0	24
113	Anomalous relaxation of self-assembled alkyl nanodomains in high-order poly(n-alkyl methacrylates). Soft Matter, 2008, 4, 1792.	2.7	65
114	Short-range order and collective dynamics of poly(vinyl acetate): A combined study by neutron scattering and molecular dynamics simulations. Journal of Chemical Physics, 2008, 129, 224903.	3.0	26
115	Neutron scattering investigation of a diluted blend of poly(ethylene oxide) in polyethersulfone. Journal of Chemical Physics, 2008, 128, 184901.	3.0	15
116	Effect of stretching on the sub-Tgphenylene-ring dynamics of polycarbonate by neutron scattering. Physical Review E, 2008, 78, 021801.	2.1	7
117	Atomic motions in the $\hat{l}\pm\hat{l}^2$ -region of glass-forming polymers: molecular versus mode coupling theory approach. Journal of Physics Condensed Matter, 2007, 19, 205127.	1.8	14
118	Polymer Chain Dynamics in a Random Environment: Heterogeneous Mobilities. Physical Review Letters, 2007, 98, 168301.	7.8	53
119	Phenylene ring dynamics in phenoxy and the effect of intramolecular linkages on the dynamics of some engineering thermoplastics below the glass transition temperature. Physical Review E, 2007, 75, 051801.	2.1	8
120	Segmental dynamics in miscible polymer blends: recent results and open questions. Soft Matter, 2007, 3, 1474.	2.7	159
121	Dynamic Confinement Effects in Polymer Blends. A Quasielastic Neutron Scattering Study of the Slow Component in the Blend Poly(vinyl acetate)/Poly(ethylene oxide). Macromolecules, 2007, 40, 4568-4577.	4.8	41
122	Quasielastic Neutron Scattering Study on the Effect of Blending on the Dynamics of Head-to-Head Poly(propylene) and Poly(ethyleneâ-^propylene). Macromolecules, 2006, 39, 1060-1072.	4.8	34
123	Dynamic Confinement Effects in Polymer Blends. A Quasielastic Neutron Scattering Study of the Dynamics of Poly(ethylene oxide) in a Blend with Poly(vinyl acetate). Macromolecules, 2006, 39, 3007-3018.	4.8	56
124	Local Structure of Syndiotactic Poly(methyl methacrylate). A Combined Study by Neutron Diffraction with Polarization Analysis and Atomistic Molecular Dynamics Simulations. Macromolecules, 2006, 39, 3947-3958.	4.8	45
125	Self- and Collective Dynamics of Syndiotactic Poly(methyl methacrylate). A Combined Study by Quasielastic Neutron Scattering and Atomistic Molecular Dynamics Simulations. Macromolecules, 2006, 39, 6260-6272.	4.8	45
126	Hydrogen dynamics in polyethersulfone: A quasielastic neutron scattering study in the high-momentum transfer region. Journal of Non-Crystalline Solids, 2006, 352, 4610-4614.	3.1	1

#	Article	IF	Citations
127	Molecular motions in glassy polycarbonate below its glass transition temperature. Journal of Non-Crystalline Solids, 2006, 352, 5072-5075.	3.1	7
128	The decisive influence of local chain dynamics on the overall dynamic structure factor close to the glass transition. Europhysics Letters, 2005, 71, 262-268.	2.0	13
129	Dynamics of poly(ethylene oxide) in a blend with poly(methyl methacrylate): A quasielastic neutron scattering and molecular dynamics simulations study. Physical Review E, 2005, 72, 031808.	2.1	92
130	Sub-Tg dynamics in polycarbonate by neutron scattering and its relation with secondary \hat{l}^3 relaxation. Journal of Chemical Physics, 2005, 123, 014907.	3.0	26
131	Dynamics of Polyethersulfone Phenylene Rings:Â A Quasielastic Neutron Scattering Study. Macromolecules, 2005, 38, 3999-4013.	4.8	21
132	Partial Structure Factors in 1,4-Polybutadiene. A Combined Neutron Scattering and Molecular Dynamics Simulations Study. Macromolecules, 2005, 38, 9847-9853.	4.8	22
133	Neutron Spin Echo in Polymer Systems. , 2005, , .		142
134	Neutron Spin Echo in Polymer Systems, Chapter 1., 2005, , 1-221.		33
135	Hydrogen motions in the α-relaxation regime of poly(vinyl ethylene): A molecular dynamics simulation and neutron scattering study. Journal of Chemical Physics, 2004, 121, 3282-3294.	3.0	26
136	Phenylene ring dynamics in bisphenol-A-polysulfone by neutron scattering. Journal of Chemical Physics, 2004, 120, 423-436.	3.0	20
137	Direct observation of the crossover from \hat{l}_{\pm} -relaxation to Rouse dynamics in a polymer melt. Europhysics Letters, 2004, 66, 239-245.	2.0	23
138	Hydrogen motions and the α-relaxation in glass-forming polymers: Molecular dynamics simulation and quasi-elastic neutron scattering results. Pramana - Journal of Physics, 2004, 63, 25-32.	1.8	13
139	Crossover from Rouse dynamics to the \hat{l}_{\pm} -relaxation in poly (vinyl ethylene). Pramana - Journal of Physics, 2004, 63, 33-40.	1.8	3
140	Self-motion of protons in the $\hat{l}\pm$ -relaxation of poly(vinyl ethylene): a neutron scattering and MD-simulation study. Physica B: Condensed Matter, 2004, 350, E1091-E1093.	2.7	1
141	Molecular motions in a polymer membrane: a time-of-flight study on poly(ether sulfone). Physica B: Condensed Matter, 2004, 350, E893-E895.	2.7	2
142	Microscopic dynamics in some engineering thermoplastics and a polymer membrane. Physica B: Condensed Matter, 2004, 350, E971-E973.	2.7	4
143	Glassy dynamics of polysulfone by quasielastic neutron scattering: from 10â^13 to. Physica B: Condensed Matter, 2004, 350, 211-213.	2.7	3
144	Structure factors in polystyrene: a neutron scattering and MD-simulation study. Physica B: Condensed Matter, 2004, 350, E881-E884.	2.7	28

#	Article	IF	CITATIONS
145	Dynamics of glass-forming polymers. Physica B: Condensed Matter, 2004, 350, 178-185.	2.7	7
146	Short-time dynamics of phenylene-rings in bisphenol based engineering thermoplastics. Chemical Physics, 2003, 292, 363-370.	1.9	6
147	Intermediate length scale dynamics in glass forming polymers: coherent and incoherent quasielastic neutron scattering results on polyisobutylene. Chemical Physics, 2003, 292, 295-309.	1.9	21
148	Experimental evidence by neutron scattering of a crossover from Gaussian to non-Gaussian behavior in the $\hat{l}\pm$ relaxation of polyisoprene. Physical Review E, 2003, 67, 051802.	2.1	82
149	Self-motion and the Â-relaxation in glass-forming polymers. Molecular dynamic simulation and quasielastic neutron scattering results in polyisoprene. Journal of Physics Condensed Matter, 2003, 15, S1127-S1138.	1.8	18
150	Intermediate length scale dynamics of polyisobutylene. Physical Review E, 2002, 65, 051803.	2.1	80
151	Non-Gaussian Nature of theαRelaxation of Glass-Forming Polyisoprene. Physical Review Letters, 2002, 89, 245701.	7.8	92
152	Heterogeneous structure of poly(vinyl chloride) as the origin of anomalous dynamical behavior. Journal of Chemical Physics, 2002, 117, 1336-1350.	3.0	33
153	Self-motion and the α relaxation in a simulated glass-forming polymer: Crossover from Gaussian to non-Gaussian dynamic behavior. Physical Review E, 2002, 65, 041804.	2.1	121
154	Partial structure factors of a simulated polymer melt. Computational Materials Science, 2002, 25, 596-605.	3.0	5
155	Component dynamics in polymer blends: a combined QENS and dielectric spectroscopy investigation. Applied Physics A: Materials Science and Processing, 2002, 74, s442-s444.	2.3	7
156	Neutron scattering on partially deuterated polybutadiene. Applied Physics A: Materials Science and Processing, 2002, 74, s371-s373.	2.3	3
157	Secondary relaxation in two engineering thermoplastics by neutron scattering and dielectric spectroscopy. Applied Physics A: Materials Science and Processing, 2002, 74, s454-s456.	2.3	8
158	Experimental aspects of polymer dynamics. Polymer International, 2002, 51, 1211-1218.	3.1	3
159	Merging of the Dielectric \hat{l}_{\pm} and \hat{l}^{2} Relaxations in Glass-Forming Polymers. Macromolecules, 2001, 34, 503-513.	4.8	77
160	Neutron scattering and the glass transition in polymers – present status and future opportunities. Journal of Non-Crystalline Solids, 2001, 287, 286-296.	3.1	14
161	Origin of Internal Viscosity Effects in Flexible Polymers:Â A Comparative Neutron Spin-Echo and Light Scattering Study on Poly(dimethylsiloxane) and Polyisobutylene. Macromolecules, 2001, 34, 1281-1290.	4.8	61
162	Response to "Comment on â€From Rouse dynamics to local relaxation: A neutron spin echo study on polyisobutylene melts' ―[J. Chem. Phys. 113, 11396 (2000)]. Journal of Chemical Physics, 2000, 113, 11398-11399.	3.0	8

#	Article	IF	CITATIONS
163	Fast dynamics in poly(vinyl chloride) below the glass transition: self and pair correlation functions. Physica B: Condensed Matter, 2000, 276-278, 440-441.	2.7	1
164	Methyl group dynamics above the glass transition temperature: a molecular dynamics simulation in polyisoprene. Chemical Physics, 2000, 261, 47-59.	1.9	22
165	Origin of Dynamic Heterogeneities in Miscible Polymer Blends: A Quasielastic Neutron Scattering Study. Physical Review Letters, 2000, 85, 772-775.	7.8	59
166	Space time observation of the -process in polymers by quasielastic neutron scattering. Journal of Physics Condensed Matter, 1999, 11, A297-A306.	1.8	22
167	On the origin of the non-exponential behaviour of the -relaxation in glass-forming polymers: incoherent neutron scattering and dielectric relaxation results. Journal of Physics Condensed Matter, 1999, 11, A363-A370.	1.8	50
168	Arbeet al.Reply:. Physical Review Letters, 1999, 82, 1336-1336.	7.8	19
169	Reply to "Comment on â€^Merging of the α and β relaxations in polybutadiene: A neutron spin echo and dielectric study' ― Physical Review E, 1999, 60, 1103-1105.	2.1	31
170	From Rouse dynamics to local relaxation: A neutron spin echo study on polyisobutylene melts. Journal of Chemical Physics, 1999, 111, 6107-6120.	3.0	78
171	Segmental Dynamics in Poly(vinylethylene)/Polyisoprene Miscible Blends Revisited. A Neutron Scattering and Broad-Band Dielectric Spectroscopy Investigation. Macromolecules, 1999, 32, 7572-7581.	4.8	104
172	Fast-dynamics in plasticized poly(vinyl chloride). Journal of Non-Crystalline Solids, 1998, 235-237, 169-172.	3.1	6
173	Investigation of the Dielectric β-Process in Polyisobutylene by Incoherent Quasielastic Neutron Scattering. Macromolecules, 1998, 31, 4926-4934.	4.8	44
174	Molecular Motions in Polyisobutylene:Â A Neutron Spin-Echo and Dielectric Investigation. Macromolecules, 1998, 31, 1133-1143.	4.8	110
175	Dynamics of Glass-Forming Polymers: "Homogeneous―versus "Heterogeneous―Scenario. Physical Review Letters, 1998, 81, 590-593.	7.8	160
176	Carbon-carbon torsional barriers driving the fast dynamics in glass-forming polymers. Physical Review B, 1998, 57, 13508-13513.	3.2	41
177	Crossover from Independent to Cooperative Segmental Dynamics in Polymers: Experimental Realization in Poly(Vinyl Chloride). Physical Review Letters, 1997, 78, 1928-1931.	7.8	69
178	The short time regime of segmental dynamics of glassâ€forming polymers. Macromolecular Symposia, 1997, 121, 133-146.	0.7	2
179	Coherent quasielastic scattering from internal relaxations in polymers. Physica B: Condensed Matter, 1997, 234-236, 437-441.	2.7	7
180	Dynamic structure factors due to relaxation processes in glass-forming polymers. Physica B: Condensed Matter, 1997, 241-243, 1005-1012.	2.7	13

#	Article	IF	CITATION
181	Study of the Dynamic Structure Factor in the \hat{l}^2 Relaxation Regime of Polybutadiene. Physical Review Letters, 1996, 76, 1872-1875.	7.8	88
182	Merging of the \hat{l}_{\pm} and \hat{l}^{2} relaxations in polybutadiene: A neutron spin echo and dielectric study. Physical Review E, 1996, 54, 3853-3869.	2.1	257
183	Neutron scattering study of the picosecond dynamics of polybutadiene and polyisoprene. Physical Review E, 1995, 52, 781-795.	2.1	192
184	The dynamics of the \hat{l}_{\pm} - and \hat{l}^2 -relaxations in glass-forming polymers studied by quasielastic neutron scattering and dielectric spectroscopy. Journal of Non-Crystalline Solids, 1994, 172-174, 126-137.	3.1	54
185	Q-dependence pf the relaxation times of the α-relaxation as observed by quasielastic neutron scattering. Journal of Non-Crystalline Solids, 1994, 172-174, 229-233.	3.1	27
186	Comparative study of "β-relaxations―in a glass-forming polymer (PVC) by dielectric spectroscopy and quasielastic neutron scattering. Physica A: Statistical Mechanics and Its Applications, 1993, 201, 447-452.	2.6	13
187	Crossover from Debye to non-Debye dynamical behavior of the α relaxation observed by quasielastic neutron scattering in a glass-forming polymer. Physical Review Letters, 1993, 71, 2603-2606.	7.8	194
188	Correlation between non-Debye behavior and Qbehavior of the \hat{l}_{\pm} relaxation in glass-forming polymeric systems. Physical Review Letters, 1992, 69, 478-481.	7.8	169
189	Interpretation of anomalous momentum transfer dependences of local chain motion of polymers observed by quasielastic incoherent neutron scattering experiments. Macromolecules, 1992, 25, 6727-6729.	4.8	51
190	Temperature and momentum transfer dependence of the dynamics of the α-relaxation in polymer melts. Physica B: Condensed Matter, 1992, 182, 369-375.	2.7	11