Arantxa Arbe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4855219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Merging of the α and β relaxations in polybutadiene: A neutron spin echo and dielectric study. Physical Review E, 1996, 54, 3853-3869.	2.1	257
2	Crossover from Debye to non-Debye dynamical behavior of the $\hat{I}\pm$ relaxation observed by quasielastic neutron scattering in a glass-forming polymer. Physical Review Letters, 1993, 71, 2603-2606.	7.8	194
3	Neutron scattering study of the picosecond dynamics of polybutadiene and polyisoprene. Physical Review E, 1995, 52, 781-795.	2.1	192
4	Correlation between non-Debye behavior andQbehavior of the α relaxation in glass-forming polymeric systems. Physical Review Letters, 1992, 69, 478-481.	7.8	169
5	Dynamics of Glass-Forming Polymers: "Homogeneous―versus "Heterogeneous―Scenario. Physical Review Letters, 1998, 81, 590-593.	7.8	160
6	Segmental dynamics in miscible polymer blends: recent results and open questions. Soft Matter, 2007, 3, 1474.	2.7	159
7	Effect of Nanoconfinement on Polymer Dynamics: Surface Layers and Interphases. Physical Review Letters, 2013, 110, 108303.	7.8	154
8	How Far Are Single-Chain Polymer Nanoparticles in Solution from the Clobular State?. ACS Macro Letters, 2014, 3, 767-772.	4.8	152
9	Neutron Spin Echo in Polymer Systems. , 2005, , .		142
10	Metallo-Folded Single-Chain Nanoparticles with Catalytic Selectivity. ACS Macro Letters, 2014, 3, 439-443.	4.8	130
11	Endowing Single-Chain Polymer Nanoparticles with Enzyme-Mimetic Activity. ACS Macro Letters, 2013, 2, 775-779.	4.8	129
12	Direct Observation of Confined Single Chain Dynamics by Neutron Scattering. Physical Review Letters, 2010, 104, 197801.	7.8	123
13	Self-motion and the α relaxation in a simulated glass-forming polymer: Crossover from Gaussian to non-Gaussian dynamic behavior. Physical Review E, 2002, 65, 041804.	2.1	121
14	Molecular Motions in Polyisobutylene:Â A Neutron Spin-Echo and Dielectric Investigation. Macromolecules, 1998, 31, 1133-1143.	4.8	110
15	"Michael―Nanocarriers Mimicking Transient-Binding Disordered Proteins. ACS Macro Letters, 2013, 2, 491-495.	4.8	106
16	How Composition Determines the Properties of Isodimorphic Poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 Crystalline Random Copolymers. Macromolecules, 2015, 48, 43-57.	60 147 Td 4.8	(succinate-< 105
17	Segmental Dynamics in Poly(vinylethylene)/Polyisoprene Miscible Blends Revisited. A Neutron Scattering and Broad-Band Dielectric Spectroscopy Investigation. Macromolecules, 1999, 32, 7572-7581.	4.8	104
18	Quasielastic neutron scattering in soft matter. Current Opinion in Colloid and Interface Science, 2009, 14, 381-390.	7.4	97

#	Article	IF	CITATIONS
19	Non-Gaussian Nature of theαRelaxation of Glass-Forming Polyisoprene. Physical Review Letters, 2002, 89, 245701.	7.8	92
20	Dynamics of poly(ethylene oxide) in a blend with poly(methyl methacrylate): A quasielastic neutron scattering and molecular dynamics simulations study. Physical Review E, 2005, 72, 031808.	2.1	92
21	Advantages of Orthogonal Folding of Single Polymer Chains to Soft Nanoparticles. Macromolecules, 2013, 46, 9748-9759.	4.8	89
22	Study of the Dynamic Structure Factor in theβRelaxation Regime of Polybutadiene. Physical Review Letters, 1996, 76, 1872-1875.	7.8	88
23	Experimental evidence by neutron scattering of a crossover from Gaussian to non-Gaussian behavior in the α relaxation of polyisoprene. Physical Review E, 2003, 67, 051802.	2.1	82
24	Design and Preparation of Singleâ€Chain Nanocarriers Mimicking Disordered Proteins for Combined Delivery of Dermal Bioactive Cargos. Macromolecular Rapid Communications, 2013, 34, 1681-1686.	3.9	82
25	Intermediate length scale dynamics of polyisobutylene. Physical Review E, 2002, 65, 051803.	2.1	80
26	From Rouse dynamics to local relaxation: A neutron spin echo study on polyisobutylene melts. Journal of Chemical Physics, 1999, 111, 6107-6120.	3.0	78
27	Merging of the Dielectric $\hat{l}\pm$ and \hat{l}^2 Relaxations in Glass-Forming Polymers. Macromolecules, 2001, 34, 503-513.	4.8	77
28	Efficient Route to Compact Single-Chain Nanoparticles: Photoactivated Synthesis via Thiol–Yne Coupling Reaction. Macromolecules, 2014, 47, 8270-8280.	4.8	77
29	Study of the dynamics of poly(ethylene oxide) by combining molecular dynamic simulations and neutron scattering experiments. Journal of Chemical Physics, 2009, 130, 094908.	3.0	73
30	Single-chain nanoparticles: opportunities provided by internal and external confinement. Materials Horizons, 2020, 7, 2292-2313.	12.2	72
31	Crossover from Independent to Cooperative Segmental Dynamics in Polymers: Experimental Realization in Poly(Vinyl Chloride). Physical Review Letters, 1997, 78, 1928-1931.	7.8	69
32	Influence of Chain Topology (Cyclic versus Linear) on the Nucleation and Isothermal Crystallization of Poly(<scp>l</scp> -lactide) and Poly(<scp>d</scp> -lactide). Macromolecules, 2018, 51, 1718-1732.	4.8	68
33	Anomalous relaxation of self-assembled alkyl nanodomains in high-order poly(n-alkyl methacrylates). Soft Matter, 2008, 4, 1792.	2.7	65
34	Concentrated Solutions of Single-Chain Nanoparticles: A Simple Model for Intrinsically Disordered Proteins under Crowding Conditions. Journal of Physical Chemistry Letters, 2016, 7, 838-844.	4.6	64
35	Neutron scattering study of the dynamics of a polymer melt under nanoscopic confinement. Journal of Chemical Physics, 2009, 131, 174901.	3.0	62
36	Origin of Internal Viscosity Effects in Flexible Polymers:Â A Comparative Neutron Spin-Echo and Light Scattering Study on Poly(dimethylsiloxane) and Polyisobutylene. Macromolecules, 2001, 34, 1281-1290.	4.8	61

#	Article	IF	CITATIONS
37	Dynamics of Water Absorbed in Polyamides. Macromolecules, 2012, 45, 1676-1687.	4.8	61
38	Origin of Dynamic Heterogeneities in Miscible Polymer Blends: A Quasielastic Neutron Scattering Study. Physical Review Letters, 2000, 85, 772-775.	7.8	59
39	Dynamic Confinement Effects in Polymer Blends. A Quasielastic Neutron Scattering Study of the Dynamics of Poly(ethylene oxide) in a Blend with Poly(vinyl acetate). Macromolecules, 2006, 39, 3007-3018.	4.8	56
40	Recent progress on polymer dynamics by neutron scattering: From simple polymers to complex materials. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 87-113.	2.1	56
41	The dynamics of the α- and β-relaxations in glass-forming polymers studied by quasielastic neutron scattering and dielectric spectroscopy. Journal of Non-Crystalline Solids, 1994, 172-174, 126-137.	3.1	54
42	Polymer Chain Dynamics in a Random Environment: Heterogeneous Mobilities. Physical Review Letters, 2007, 98, 168301.	7.8	53
43	Dynamics in Poly(<i>n</i> -alkyl methacrylates): A Neutron Scattering, Calorimetric, and Dielectric Study. Macromolecules, 2010, 43, 3107-3119.	4.8	53
44	Efficient Synthesis of Single-Chain Globules Mimicking the Morphology and Polymerase Activity of Metalloenzymes. Macromolecular Rapid Communications, 2015, 36, 1592-1597.	3.9	52
45	Interpretation of anomalous momentum transfer dependences of local chain motion of polymers observed by quasielastic incoherent neutron scattering experiments. Macromolecules, 1992, 25, 6727-6729.	4.8	51
46	On the origin of the non-exponential behaviour of the -relaxation in glass-forming polymers: incoherent neutron scattering and dielectric relaxation results. Journal of Physics Condensed Matter, 1999, 11, A363-A370.	1.8	50
47	Folding Single Chains to Single-Chain Nanoparticles via Reversible Interactions: What Size Reduction Can One Expect?. Macromolecules, 2017, 50, 1732-1739.	4.8	49
48	Local Structure of Syndiotactic Poly(methyl methacrylate). A Combined Study by Neutron Diffraction with Polarization Analysis and Atomistic Molecular Dynamics Simulations. Macromolecules, 2006, 39, 3947-3958.	4.8	45
49	Self- and Collective Dynamics of Syndiotactic Poly(methyl methacrylate). A Combined Study by Quasielastic Neutron Scattering and Atomistic Molecular Dynamics Simulations. Macromolecules, 2006, 39, 6260-6272.	4.8	45
50	Investigation of the Dielectric β-Process in Polyisobutylene by Incoherent Quasielastic Neutron Scattering. Macromolecules, 1998, 31, 4926-4934.	4.8	44
51	Structure and dynamics of single-chain nano-particles in solution. Polymer, 2016, 105, 532-544.	3.8	44
52	Carbon-carbon torsional barriers driving the fast dynamics in glass-forming polymers. Physical Review B, 1998, 57, 13508-13513.	3.2	41
53	Dynamic Confinement Effects in Polymer Blends. A Quasielastic Neutron Scattering Study of the Slow Component in the Blend Poly(vinyl acetate)/Poly(ethylene oxide). Macromolecules, 2007, 40, 4568-4577.	4.8	41
54	Poly(butylene succinate-ran-ε-caprolactone) copolyesters: Enzymatic synthesis and crystalline isodimorphic character. European Polymer Journal, 2017, 95, 795-808.	5.4	41

#	Article	IF	CITATIONS
55	Quasielastic Neutron Scattering Study on the Dynamics of Poly(alkylene oxide)s. Macromolecules, 2012, 45, 4394-4405.	4.8	40
56	A Solventâ€Based Strategy for Tuning the Internal Structure of Metalloâ€Folded Singleâ€Chain Nanoparticles. Macromolecular Rapid Communications, 2016, 37, 1060-1065.	3.9	39
57	Quasielastic neutron scattering study of hydrogen motions in an aqueous poly(vinyl methyl ether) solution. Journal of Chemical Physics, 2011, 134, 204906.	3.0	37
58	Component dynamics in polyvinylpyrrolidone concentrated aqueous solutions. Journal of Chemical Physics, 2012, 137, 084902.	3.0	36
59	Single Chain Dynamic Structure Factor of Linear Polymers in an All-Polymer Nano-Composite. Macromolecules, 2016, 49, 2354-2364.	4.8	36
60	Neutron scattering and molecular dynamics simulations: synergetic tools to unravel structure and dynamics in polymers. Soft Matter, 2012, 8, 8257.	2.7	35
61	Quasielastic Neutron Scattering Study on the Effect of Blending on the Dynamics of Head-to-Head Poly(propylene) and Poly(ethyleneâ~`propylene). Macromolecules, 2006, 39, 1060-1072.	4.8	34
62	Heterogeneous structure of poly(vinyl chloride) as the origin of anomalous dynamical behavior. Journal of Chemical Physics, 2002, 117, 1336-1350.	3.0	33
63	Neutron Spin Echo in Polymer Systems, Chapter 1. , 2005, , 1-221.		33
64	Reply to "Comment on â€~Merging of the α and β relaxations in polybutadiene: A neutron spin echo and dielectric study' ― Physical Review E, 1999, 60, 1103-1105.	2.1	31
65	The Role of the Topological Constraints in the Chain Dynamics in All-Polymer Nanocomposites. Macromolecules, 2017, 50, 1719-1731.	4.8	31
66	Crowding the Environment of Single-Chain Nanoparticles: A Combined Study by SANS and Simulations. Macromolecules, 2018, 51, 1573-1585.	4.8	31
67	Short and Intermediate Range Order in Poly(alkylene oxide)s. A Neutron Diffraction and Molecular Dynamics Simulation Study. Macromolecules, 2012, 45, 7293-7303.	4.8	29
68	Structure factors in polystyrene: a neutron scattering and MD-simulation study. Physica B: Condensed Matter, 2004, 350, E881-E884.	2.7	28
69	Microscopic Dynamics in Nanocomposites of Poly(ethylene oxide) and Poly(methyl methacrylate) Soft Nanoparticles: A Quasi-Elastic Neutron Scattering Study. Macromolecules, 2014, 47, 304-315.	4.8	28
70	Q-dependence pf the relaxation times of the α-relaxation as observed by quasielastic neutron scattering. Journal of Non-Crystalline Solids, 1994, 172-174, 229-233.	3.1	27
71	Structure and Dynamics of Self-Assembled Comb Copolymers: Comparison between Simulations of a Generic Model and Neutron Scattering Experiments. Macromolecules, 2011, 44, 1695-1706.	4.8	27
72	Hydrogen motions in the α-relaxation regime of poly(vinyl ethylene): A molecular dynamics simulation and neutron scattering study. Journal of Chemical Physics, 2004, 121, 3282-3294.	3.0	26

#	Article	IF	CITATIONS
73	Sub-Tg dynamics in polycarbonate by neutron scattering and its relation with secondary Î ³ relaxation. Journal of Chemical Physics, 2005, 123, 014907.	3.0	26
74	Short-range order and collective dynamics of poly(vinyl acetate): A combined study by neutron scattering and molecular dynamics simulations. Journal of Chemical Physics, 2008, 129, 224903.	3.0	26
75	Modeling the collective relaxation time of glass-forming polymers at intermediate length scales: Application to polyisobutylene. Journal of Chemical Physics, 2013, 139, 044906.	3.0	26
76	Coherent structural relaxation of water from meso- to intermolecular scales measured using neutron spectroscopy with polarization analysis. Physical Review Research, 2020, 2, .	3.6	26
77	Application of SSA thermal fractionation and X-ray diffraction to elucidate comonomer inclusion or exclusion from the crystalline phases in poly(butylene succinate-ran-butylene azelate) random copolymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2346-2358.	2.1	25
78	Atomic motions in the αβ-merging region of 1,4-polybutadiene: A molecular dynamics simulation study. Journal of Chemical Physics, 2008, 128, 224905.	3.0	24
79	Characterization of the "simple-liquid―state in a polymeric system: Coherent and incoherent scattering functions. Physical Review E, 2009, 80, 041805.	2.1	24
80	Quasielastic Neutron Scattering and Molecular Dynamics Simulation Study on the Structure Factor of Poly(ethylene- <i>alt</i> -propylene). Macromolecules, 2009, 42, 8271-8285.	4.8	24
81	Plasticization and cocrystallization in L <scp>LDPE</scp> /wax blends. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1469-1482.	2.1	24
82	Direct observation of the crossover from α-relaxation to Rouse dynamics in a polymer melt. Europhysics Letters, 2004, 66, 239-245.	2.0	23
83	Atomic motions in poly(vinyl methyl ether): A combined study by quasielastic neutron scattering and molecular dynamics simulations in the light of the mode coupling theory. Journal of Chemical Physics, 2009, 131, 204901.	3.0	23
84	Relaxations and Relaxor-Ferroelectric-Like Response of Nanotubularly Confined Poly(vinylidene) Tj ETQq0 0 0 rgBT	- /Qyerlock	₹ 10 Tf 50 30
85	Size of Elastic Single-Chain Nanoparticles in Solution and on Surfaces. Macromolecules, 2017, 50, 6323-6331.	4.8	23
86	Space time observation of the -process in polymers by quasielastic neutron scattering. Journal of Physics Condensed Matter, 1999, 11, A297-A306.	1.8	22
87	Methyl group dynamics above the glass transition temperature: a molecular dynamics simulation in polyisoprene. Chemical Physics, 2000, 261, 47-59.	1.9	22
88	Partial Structure Factors in 1,4-Polybutadiene. A Combined Neutron Scattering and Molecular Dynamics Simulations Study. Macromolecules, 2005, 38, 9847-9853.	4.8	22
89	Synthesis and Characterization of Double Crystalline Cyclic Diblock Copolymers of Poly(εâ€caprolactone) and Poly(<scp>l</scp> d)â€lactide) (<i>c</i> (PCLâ€ <i>b</i> ―PL(D)LA)). Macromolecular Rapid Communications, <u>2016, 37, 1676-1681.</u>	3.9	22
90	Intermediate length scale dynamics in glass forming polymers: coherent and incoherent quasielastic	1.9	21

Intermediate length scale dynamics in glass forming polymers: coherent and incoherent quasielastic neutron scattering results on polyisobutylene. Chemical Physics, 2003, 292, 295-309. 1.9 90

#	Article	IF	CITATIONS
91	Dynamics of Polyethersulfone Phenylene Rings:Â A Quasielastic Neutron Scattering Study. Macromolecules, 2005, 38, 3999-4013.	4.8	21
92	Study of the structure and dynamics of poly(vinyl pyrrolidone) by molecular dynamics simulations validated by quasielastic neutron scattering and x-ray diffraction experiments. Journal of Chemical Physics, 2011, 134, 054904.	3.0	21
93	Neutron Scattering and X-ray Investigation of the Structure and Dynamics of Poly(ethyl) Tj ETQq1 1 0.784314 r	gBT ₄ .8ver	lock 10 Tf 50
94	Phenylene ring dynamics in bisphenol-A-polysulfone by neutron scattering. Journal of Chemical Physics, 2004, 120, 423-436.	3.0	20
95	Glassy Dynamics of Polystyrene by Quasielastic Neutron Scattering. Macromolecules, 2011, 44, 3161-3168.	4.8	20
96	Nanostructuration by Self-Assembly in <i>N</i> -Alkyl Thiazolium and Triazolium Side-Chain Polymethacrylates. Macromolecules, 2015, 48, 7180-7193.	4.8	20
97	Phase behavior of side-chain liquid-crystalline polymers containing biphenyl mesogens with different spacer lengths synthesized <i>via</i> miniemulsion polymerization. Polymer Chemistry, 2016, 7, 4736-4750.	3.9	20
98	Arbeet al.Reply:. Physical Review Letters, 1999, 82, 1336-1336.	7.8	19
99	Positron annihilation and relaxation dynamics from dielectric spectroscopy and nuclear magnetic resonance: <i>Cis–trans-</i> 1,4-poly(butadiene). Journal of Chemical Physics, 2011, 134, 164507.	3.0	19
100	Dynamic study of polystyrene-block-poly(4-vinylpyridine) copolymer in bulk and confined in cylindrical nanopores. Polymer, 2014, 55, 4057-4066.	3.8	19
101	The role of PLLA-g-montmorillonite nanohybrids in the acceleration of the crystallization rate of a commercial PLA. CrystEngComm, 2016, 18, 9334-9344.	2.6	19
102	Sequential crystallization and morphology of triple crystalline biodegradable PEO-b-PCL-b-PLLA triblock terpolymers. RSC Advances, 2016, 6, 4739-4750.	3.6	19
103	Self-motion and the Â-relaxation in glass-forming polymers. Molecular dynamic simulation and quasielastic neutron scattering results in polyisoprene. Journal of Physics Condensed Matter, 2003, 15, S1127-S1138.	1.8	18
104	Investigation of a Nanocomposite of 75 wt % Poly(methyl methacrylate) Nanoparticles with 25 wt % Poly(ethylene oxide) Linear Chains: A Quasielatic Neutron Scattering, Calorimetric, and WAXS Study. Macromolecules, 2014, 47, 3005-3016.	4.8	18
105	How Does Microstructural Design Affect the Dynamics and Rheology of Segmented Polyurethanes?. Macromolecules, 2020, 53, 5381-5398.	4.8	18
106	High magnetization FeCo nanoparticles for magnetorheological fluids with enhanced response. Soft Matter, 2021, 17, 840-852.	2.7	18
107	Unexpected PDMS Behavior in Segregated Cylindrical and Spherical Nanophases of PS–PDMS Asymmetric Diblock Copolymers. Macromolecules, 2012, 45, 491-502.	4.8	17
108	Effect of polar solvents on the crystalline phase of polyamides. Polymer, 2014, 55, 2867-2881.	3.8	17

#	Article	IF	CITATIONS
109	Insights into the Network Structure of Cross-Linked Polymers Synthesized via Miniemulsion Nitroxide-Mediated Radical Polymerization. Macromolecules, 2018, 51, 9740-9748.	4.8	17
110	Local Domain Size in Single-Chain Polymer Nanoparticles. ACS Omega, 2018, 3, 8648-8654.	3.5	17
111	Mesoscale Dynamics in Melts of Single-Chain Polymeric Nanoparticles. Macromolecules, 2019, 52, 6935-6942.	4.8	17
112	Insight into the Structure and Dynamics of Polymers by Neutron Scattering Combined with Atomistic Molecular Dynamics Simulations. Polymers, 2020, 12, 3067.	4.5	17
113	Crowding Effects on the Structure and Dynamics of the Intrinsically Disordered Nuclear Chromatin Protein NUPR1. Frontiers in Molecular Biosciences, 2021, 8, 684622.	3.5	17
114	Chain Dynamics of Unentangled Poly(ethylene- <i>alt</i> propylene) Melts by Means of Neutron Scattering and Fully Atomistic Molecular Dynamics Simulations. Macromolecules, 2011, 44, 3129-3139.	4.8	16
115	Publisher's Note: Effect of Nanoconfinement on Polymer Dynamics: Surface Layers and Interphases [Phys. Rev. Lett. 110 , 108303 (2013)]. Physical Review Letters, 2013, 110, .	7.8	16
116	Influence of Solvent on Poly(2-(Dimethylamino)Ethyl Methacrylate) Dynamics in Polymer-Concentrated Mixtures: A Combined Neutron Scattering, Dielectric Spectroscopy, and Calorimetric Study. Macromolecules, 2015, 48, 6724-6735.	4.8	16
117	Effect of Molecular Crowding on Conformation and Interactions of Single-Chain Nanoparticles. Macromolecules, 2019, 52, 4295-4305.	4.8	16
118	Neutron scattering investigation of a diluted blend of poly(ethylene oxide) in polyethersulfone. Journal of Chemical Physics, 2008, 128, 184901.	3.0	15
119	Collective Features in Polyisobutylene. A Study of the Static and Dynamic Structure Factor by Molecular Dynamics Simulations. Macromolecules, 2014, 47, 447-459.	4.8	15
120	Effect of chain stiffness on the structure of single-chain polymer nanoparticles. Journal of Physics Condensed Matter, 2018, 30, 034001.	1.8	15
121	Facile Access to Completely Deuterated Singleâ€Chain Nanoparticles Enabled by Intramolecular Azide Photodecomposition. Macromolecular Rapid Communications, 2019, 40, 1900046.	3.9	15
122	Neutron scattering and the glass transition in polymers – present status and future opportunities. Journal of Non-Crystalline Solids, 2001, 287, 286-296.	3.1	14
123	Atomic motions in the $\hat{l}\pm\hat{l}^2$ -region of glass-forming polymers: molecular versus mode coupling theory approach. Journal of Physics Condensed Matter, 2007, 19, 205127.	1.8	14
124	Comparative study of "β-relaxations―in a glass-forming polymer (PVC) by dielectric spectroscopy and quasielastic neutron scattering. Physica A: Statistical Mechanics and Its Applications, 1993, 201, 447-452.	2.6	13
125	Dynamic structure factors due to relaxation processes in glass-forming polymers. Physica B: Condensed Matter, 1997, 241-243, 1005-1012.	2.7	13
126	Hydrogen motions and the α-relaxation in glass-forming polymers: Molecular dynamics simulation and quasi-elastic neutron scattering results. Pramana - Journal of Physics, 2004, 63, 25-32.	1.8	13

#	Article	IF	CITATIONS
127	The decisive influence of local chain dynamics on the overall dynamic structure factor close to the glass transition. Europhysics Letters, 2005, 71, 262-268.	2.0	13
128	Positron annihilation and relaxation dynamics from dielectric spectroscopy: poly(vinylmethylether). Journal of Physics Condensed Matter, 2012, 24, 155104.	1.8	13
129	Applicability of mode-coupling theory to polyisobutylene: A molecular dynamics simulation study. Physical Review E, 2013, 88, 042302.	2.1	13
130	Component dynamics in nanostructured PI-PDMS diblock copolymers with PI segregated in lamellas, cylinders, and spheres. Colloid and Polymer Science, 2014, 292, 1863-1876.	2.1	13
131	Influence of Chain Primary Structure and Topology (Branching) on Crystallization and Thermal Properties: The Case of Polysulfides. Macromolecules, 2019, 52, 2093-2104.	4.8	13
132	Selfâ€Reporting of Folding and Aggregation by Orthogonal Hantzsch Luminophores Within a Single Polymer Chain. Angewandte Chemie - International Edition, 2021, 60, 3534-3539.	13.8	13
133	An unexpected route to aldehyde-decorated single-chain nanoparticles from azides. Polymer Chemistry, 2016, 7, 6570-6574.	3.9	12
134	Temperature and momentum transfer dependence of the dynamics of the α-relaxation in polymer melts. Physica B: Condensed Matter, 1992, 182, 369-375.	2.7	11
135	DETERMINATION OF FILLER STRUCTURE IN SILICA-FILLED SBR COMPOUNDS BY MEANS OF SAXS AND AFM. Rubber Chemistry and Technology, 2015, 88, 690-710.	1.2	11
136	Applying Polymer Blend Dynamics Concepts to a Simplified Industrial System. A Combined Effort by Dielectric Spectroscopy and Neutron Scattering. Macromolecules, 2018, 51, 6692-6706.	4.8	11
137	Melts of single-chain nanoparticles: A neutron scattering investigation. Journal of Applied Physics, 2020, 127, .	2.5	11
138	Human importin α3 and its N-terminal truncated form, without the importin-β-binding domain, are oligomeric species with a low conformational stability in solution. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129609.	2.4	11
139	Unraveling the coherent dynamic structure factor of liquid water at the mesoscale by molecular dynamics simulations. Journal of Chemical Physics, 2021, 155, 244509.	3.0	11
140	Dynamics of Poly(butylene oxide) Well above the Glass Transition. A Fully Atomistic Molecular Dynamics Simulation Study. Macromolecules, 2013, 46, 1678-1685.	4.8	10
141	A Useful Methodology for Determining the Compaction Degree of Singleâ€Chain Nanoparticles by Conventional SEC. Particle and Particle Systems Characterization, 2016, 33, 373-381.	2.3	10
142	Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations. Physical Chemistry Chemical Physics, 2017, 19, 27739-27754.	2.8	10
143	Cyclic Polyethylene Glycol as Nanoparticle Surface Ligand. ACS Macro Letters, 2020, 9, 1604-1610.	4.8	10
144	Advances in the Multi-Orthogonal Folding of Single Polymer Chains into Single-Chain Nanoparticles. Polymers, 2021, 13, 293.	4.5	10

#	Article	IF	CITATIONS
145	Ultrafiltration of single-chain polymer nanoparticles through nanopores and nanoslits. Polymer, 2018, 148, 61-67.	3.8	9
146	Response to "Comment on â€~From Rouse dynamics to local relaxation: A neutron spin echo study on polyisobutylene melts' ―[J. Chem. Phys. 113, 11396 (2000)]. Journal of Chemical Physics, 2000, 113, 11398-11399.	3.0	8
147	Secondary relaxation in two engineering thermoplastics by neutron scattering and dielectric spectroscopy. Applied Physics A: Materials Science and Processing, 2002, 74, s454-s456.	2.3	8
148	Phenylene ring dynamics in phenoxy and the effect of intramolecular linkages on the dynamics of some engineering thermoplastics below the glass transition temperature. Physical Review E, 2007, 75, 051801.	2.1	8
149	Collective dynamics of glass-forming polymers at intermediate length scales. EPJ Web of Conferences, 2015, 83, 01001.	0.3	8
150	Direct Observation of Dynamic Tube Dilation in Entangled Polymer Blends: A Combination of Neutron Scattering and Dielectric Techniques. Physical Review Letters, 2019, 123, 187802.	7.8	8
151	Tube Dilation in Isofrictional Polymer Blends Based on Polyisoprene with Different Topologies: Combination of Dielectric and Rheological Spectroscopy, Pulsed-Field-Gradient NMR, and Neutron Spin Echo (NSE) Techniques. Macromolecules, 2020, 53, 5919-5936.	4.8	8
152	Coherent quasielastic scattering from internal relaxations in polymers. Physica B: Condensed Matter, 1997, 234-236, 437-441.	2.7	7
153	Component dynamics in polymer blends: a combined QENS and dielectric spectroscopy investigation. Applied Physics A: Materials Science and Processing, 2002, 74, s442-s444.	2.3	7
154	Dynamics of glass-forming polymers. Physica B: Condensed Matter, 2004, 350, 178-185.	2.7	7
155	Molecular motions in glassy polycarbonate below its glass transition temperature. Journal of Non-Crystalline Solids, 2006, 352, 5072-5075.	3.1	7
156	Effect of stretching on the sub-Tgphenylene-ring dynamics of polycarbonate by neutron scattering. Physical Review E, 2008, 78, 021801.	2.1	7
157	Supramolecular Self-Assembly of Monocarboxydecyl-Terminated Dimethylsiloxane Oligomer. Macromolecules, 2017, 50, 8688-8697.	4.8	7
158	Structure and Dynamics of Irreversible Single-Chain Nanoparticles in Dilute Solution. A Neutron Scattering Investigation. Macromolecules, 2020, 53, 8068-8082.	4.8	7
159	Collective Motions and Mechanical Response of a Bulk of Single-Chain Nano-Particles Synthesized by Click-Chemistry. Polymers, 2021, 13, 50.	4.5	7
160	Fast-dynamics in plasticized poly(vinyl chloride). Journal of Non-Crystalline Solids, 1998, 235-237, 169-172.	3.1	6
161	Short-time dynamics of phenylene-rings in bisphenol based engineering thermoplastics. Chemical Physics, 2003, 292, 363-370.	1.9	6
162	Role of Dynamic Asymmetry on the Collective Dynamics of Comblike Polymers: Insights from Neutron Spin-Echo Experiments and Coarse-Grained Molecular Dynamics Simulations. Macromolecules, 2016, 49, 4989-5000.	4.8	6

Arantxa Arbe

#	Article	IF	CITATIONS
163	Mechanical and Morphological Properties of Waterborne ABA Hard-Soft-Hard Block Copolymers Synthesized by Means of RAFT Miniemulsion Polymerization. Polymers, 2019, 11, 1259.	4.5	6
164	Brushes of elastic single-chain nanoparticles on flat surfaces. Polymer, 2019, 169, 207-214.	3.8	6
165	Modeling the high frequency mechanical relaxation of simplified industrial polymer mixtures using dielectric relaxation results. Polymer, 2020, 187, 122051.	3.8	6
166	Concentration Fluctuations and Nanosegregation in a Simplified Industrial Blend with Large Dynamic Asymmetry. Macromolecules, 2020, 53, 7150-7160.	4.8	6
167	Partial structure factors of a simulated polymer melt. Computational Materials Science, 2002, 25, 596-605.	3.0	5
168	Structure and component dynamics in binary mixtures of poly(2-(dimethylamino)ethyl methacrylate) with water and tetrahydrofuran: A diffraction, calorimetric, and dielectric spectroscopy study. Journal of Chemical Physics, 2016, 144, 154903.	3.0	5
169	Acrylic-based composite latexes containing nano-sized liquid crystalline domains. Polymer, 2017, 108, 288-300.	3.8	5
170	Dynamic Processes and Mechanisms Involved in Relaxations of Single-Chain Nano-Particle Melts. Polymers, 2021, 13, 2316.	4.5	5
171	Disentangling Component Dynamics in an All-Polymer Nanocomposite Based on Single-Chain Nanoparticles by Quasielastic Neutron Scattering. Macromolecules, 2022, 55, 2320-2332.	4.8	5
172	Microscopic dynamics in some engineering thermoplastics and a polymer membrane. Physica B: Condensed Matter, 2004, 350, E971-E973.	2.7	4
173	Selfâ€Reporting of Folding and Aggregation by Orthogonal Hantzsch Luminophores Within a Single Polymer Chain. Angewandte Chemie, 2021, 133, 3576-3581.	2.0	4
174	Neutron scattering on partially deuterated polybutadiene. Applied Physics A: Materials Science and Processing, 2002, 74, s371-s373.	2.3	3
175	Experimental aspects of polymer dynamics. Polymer International, 2002, 51, 1211-1218.	3.1	3
176	Crossover from Rouse dynamics to the α-relaxation in poly (vinyl ethylene). Pramana - Journal of Physics, 2004, 63, 33-40.	1.8	3
177	Glassy dynamics of polysulfone by quasielastic neutron scattering: from 10â^'13 to. Physica B: Condensed Matter, 2004, 350, 211-213.	2.7	3
178	Nanophase Separation and Exotic Dynamic Behavior in Comb-Like Polymers. Journal of the Physical Society of Japan, 2013, 82, SA015.	1.6	3
179	The short time regime of segmental dynamics of glassâ€forming polymers. Macromolecular Symposia, 1997, 121, 133-146.	0.7	2
180	Molecular motions in a polymer membrane: a time-of-flight study on poly(ether sulfone). Physica B: Condensed Matter, 2004, 350, E893-E895.	2.7	2

Arantxa Arbe

0

#	Article	IF	CITATIONS
181	The C Terminus of the Ribosomal-Associated Protein LrtA is an Intrinsically Disordered Oligomer. International Journal of Molecular Sciences, 2018, 19, 3902.	4.1	2
182	Fast dynamics in poly(vinyl chloride) below the glass transition: self and pair correlation functions. Physica B: Condensed Matter, 2000, 276-278, 440-441.	2.7	1
183	Self-motion of protons in the α-relaxation of poly(vinyl ethylene): a neutron scattering and MD-simulation study. Physica B: Condensed Matter, 2004, 350, E1091-E1093.	2.7	1
184	Hydrogen dynamics in polyethersulfone: A quasielastic neutron scattering study in the high-momentum transfer region. Journal of Non-Crystalline Solids, 2006, 352, 4610-4614.	3.1	1
185	Neutron Scattering and Polymer Dynamics. Neutron News, 2010, 21, 11-14.	0.2	1
186	Dielectric relaxation analysis of hybrid acrylic–polyurethane gels. Materials Today Communications, 2016, 8, 100-107.	1.9	1
187	Relaxation Processes in Liquids and Glass-Forming Systems: What Can We Learn by Comparing Neutron Scattering and Dielectric Spectroscopy Results?. Advances in Dielectrics, 2018, , 247-277.	1.2	1
188	Disentangling Self-Atomic Motions in Polyisobutylene by Molecular Dynamics Simulations. Polymers, 2021, 13, 670.	4.5	1
189	Complex polymers. Neutron Scattering Applications and Techniques, 2012, , 103-121.	0.2	1

190 Dynamical Properties of Plasticizer in Polyvinyl Acetate. , 2011, , .