Steven H Overbury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4855191/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coupling of Acetaldehyde to Crotonaldehyde on CeO _{2–<i>x</i>} (111): Bifunctional Mechanism and Role of Oxygen Vacancies. Journal of Physical Chemistry C, 2019, 123, 8273-8286.	3.1	23
2	Complexity of Intercalation in MXenes: Destabilization of Urea by Two-Dimensional Titanium Carbide. Journal of the American Chemical Society, 2018, 140, 10305-10314.	13.7	93
3	A high precision gas flow cell for performingin situneutron studies of local atomic structure in catalytic materials. Review of Scientific Instruments, 2017, 88, 034101.	1.3	9
4	Methyl Formate Formation during Methanol Conversion over the (111) Ceria Surface. Journal of Physical Chemistry C, 2017, 121, 9920-9928.	3.1	4
5	Acid–Base Reactivity of Perovskite Catalysts Probed via Conversion of 2-Propanol over Titanates and Zirconates. ACS Catalysis, 2017, 7, 4423-4434.	11.2	81
6	Fast MAS ¹ H NMR Study of Water Adsorption and Dissociation on the (100) Surface of Ceria Nanocubes: A Fully Hydroxylated, Hydrophobic Ceria Surface. Journal of Physical Chemistry C, 2017, 121, 7450-7465.	3.1	26
7	Direct Visualization and Control of Atomic Mobility at {100} Surfaces of Ceria in the Environmental Transmission Electron Microscope. Nano Letters, 2017, 17, 7652-7658.	9.1	45
8	Diphosphine-Protected Au ₂₂ Nanoclusters on Oxide Supports Are Active for Gas-Phase Catalysis without Ligand Removal. Nano Letters, 2016, 16, 6560-6567.	9.1	88
9	Rational Design of Bi Nanoparticles for Efficient Electrochemical CO ₂ Reduction: The Elucidation of Size and Surface Condition Effects. ACS Catalysis, 2016, 6, 6255-6264.	11.2	212
10	Cu-Enhanced Surface Defects and Lattice Mobility of Pr-CeO ₂ Mixed Oxides. Journal of Physical Chemistry C, 2016, 120, 27996-28008.	3.1	9
11	Coadsorbed Species Explain the Mechanism of Methanol Temperature-Programmed Desorption on CeO ₂ (111). Journal of Physical Chemistry C, 2016, 120, 7241-7247.	3.1	14
12	Hydrogen and methoxy coadsorption in the computation of the catalytic conversion of methanol on the ceria (111) surface. Surface Science, 2016, 648, 242-249.	1.9	9
13	Mesoporous xEr ₂ O ₃ ·CoTiO ₃ composite oxide catalysts for low temperature dehydrogenation of ethylbenzene to styrene using CO ₂ as a soft oxidant. RSC Advances, 2016, 6, 32989-32993.	3.6	4
14	Oxidative dehydrogenation of isobutane over vanadia catalysts supported by titania nanoshapes. Catalysis Today, 2016, 263, 84-90.	4.4	17
15	Dehydrogenation of methanol to formaldehyde catalyzed by pristine and defective ceria surfaces. Physical Chemistry Chemical Physics, 2016, 18, 9990-9998.	2.8	9
16	Origins and implications of the ordering of oxygen vacancies and localized electrons on partially reduced <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CeO</mml:mi><mml:mn>2Physical Review B, 2015, 92, .</mml:mn></mml:msub></mml:math 	l:mn ^{3,2} /mr	nl:msub> <mm< td=""></mm<>
17	Understanding Defectâ€Stabilized Noncovalent Functionalization of Graphene. Advanced Materials Interfaces, 2015, 2, 1500277.	3.7	19
18	Spectroscopic Investigation of Surface-Dependent Acid–Base Property of Ceria Nanoshapes. Journal of	3.1	156

Physical Chemistry C, 2015, 119, 7340-7350.

3.1156

#	Article	IF	CITATIONS
19	Pathways for Ethanol Dehydrogenation and Dehydration Catalyzed by Ceria (111) and (100) Surfaces. Journal of Physical Chemistry C, 2015, 119, 2447-2455.	3.1	46
20	Selective Hydrogenation of Phenol Catalyzed by Palladium on High-Surface-Area Ceria at Room Temperature and Ambient Pressure. ACS Catalysis, 2015, 5, 2051-2061.	11.2	120
21	Reactivity and reaction intermediates for acetic acid adsorbed on CeO2(1 1 1). Catalysis Today, 2015, 253, 65-76.	4.4	43
22	The Characterization and Structure-Dependent Catalysis of Ceria with Well-Defined Facets. , 2015, , 71-97.		5
23	Role Of CO ₂ As a Soft Oxidant For Dehydrogenation of Ethylbenzene to Styrene over a High-Surface-Area Ceria Catalyst. ACS Catalysis, 2015, 5, 6426-6435.	11.2	90
24	Hierarchically Superstructured Prussian Blue Analogues: Spontaneous Assembly Synthesis and Applications as Pseudocapacitive Materials. ChemSusChem, 2015, 8, 177-183.	6.8	54
25	Understanding catalyst behavior during in situ heating through simultaneous secondary and transmitted electron imaging. Nanoscale Research Letters, 2014, 9, 614.	5.7	5
26	Catalytic activity and thermal stability of Au–CuO/SiO2 catalysts for the low temperature oxidation of CO in the presence of propylene and NO. Catalysis Today, 2014, 231, 15-21.	4.4	26
27	Identifying Active Functionalities on Few‣ayered Graphene Catalysts for Oxidative Dehydrogenation of Isobutane. ChemSusChem, 2014, 7, 483-491.	6.8	56
28	Ionic liquid derived carbons as highly efficient oxygen reduction catalysts: first elucidation of pore size distribution dependent kinetics. Chemical Communications, 2014, 50, 1469-1471.	4.1	49
29	Thiolate Ligands as a Double-Edged Sword for CO Oxidation on CeO ₂ Supported Au ₂₅ (SCH ₂ CH ₂ Ph) ₁₈ Nanoclusters. Journal of the American Chemical Society, 2014, 136, 6111-6122.	13.7	245
30	Adsorption and Reaction of Acetaldehyde on Shape-Controlled CeO ₂ Nanocrystals: Elucidation of Structure–Function Relationships. ACS Catalysis, 2014, 4, 2437-2448.	11.2	128
31	Surface structure dependence of selective oxidation of ethanol on faceted CeO2 nanocrystals. Journal of Catalysis, 2013, 306, 164-176.	6.2	95
32	Structure Activity Relationships of Silica Supported AuCu and AuCuPd Alloy Catalysts for the Oxidation of CO. Catalysis Letters, 2013, 143, 926-935.	2.6	19
33	Pseudocapacitance and performance stability of quinone-coated carbon onions. Nano Energy, 2013, 2, 702-712.	16.0	135
34	Inelastic neutron scattering, Raman and DFT investigations of the adsorption of phenanthrenequinone on onion-like carbon. Carbon, 2013, 52, 150-157.	10.3	14
35	Graphitic mesoporous carbon-supported molybdenum carbides for catalytic hydrogenation of carbon monoxide to mixed alcohols. Microporous and Mesoporous Materials, 2013, 170, 141-149.	4.4	24
36	Carbon-Mediated Catalysis: Oxidative Dehydrogenation on Graphitic Carbon. ACS Symposium Series, 2013, , 247-258.	0.5	7

#	Article	IF	CITATIONS
37	Rhodium Nanoparticles Confined in Ordered Mesoporous Carbon: Microscopic Characterization and Catalytic Application for Synthesis Gas Conversion to Ethanol. ACS Symposium Series, 2013, , 231-243.	0.5	0
38	Oxygenâ€Functionalized Few‣ayer Graphene Sheets as Active Catalysts for Oxidative Dehydrogenation Reactions. ChemSusChem, 2013, 6, 840-846.	6.8	61
39	Structure of Au ₁₅ (SR) ₁₃ and Its Implication for the Origin of the Nucleus in Thiolated Gold Nanoclusters. Journal of the American Chemical Society, 2013, 135, 8786-8789.	13.7	126
40	Novel MEMS-Based Gas-Cell/Heating Specimen Holder Provides Advanced Imaging Capabilities for <i>In Situ</i> Reaction Studies. Microscopy and Microanalysis, 2012, 18, 656-666.	0.4	93
41	Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering. Journal of Physical Chemistry B, 2012, 116, 7291-7295.	2.6	11
42	A solid molecular basket sorbent for CO ₂ capture from gas streams with low CO ₂ concentration under ambient conditions. Physical Chemistry Chemical Physics, 2012, 14, 1485-1492.	2.8	107
43	Oxygen Vacancy-Assisted Coupling and Enolization of Acetaldehyde on CeO ₂ (111). Journal of the American Chemical Society, 2012, 134, 18034-18045.	13.7	97
44	Structures and Energetics of Pt Clusters on TiO ₂ : Interplay between Metal–Metal Bonds and Metal–Oxygen Bonds. Journal of Physical Chemistry C, 2012, 116, 21880-21885.	3.1	39
45	A Raman Spectroscopic Study of the Speciation of Vanadia Supported on Ceria Nanocrystals with Defined Surface Planes. ChemCatChem, 2012, 4, 1653-1661.	3.7	40
46	Silica-Supported Au–CuO _{<i>x</i>} Hybrid Nanocrystals as Active and Selective Catalysts for the Formation of Acetaldehyde from the Oxidation of Ethanol. ACS Catalysis, 2012, 2, 2537-2546.	11.2	105
47	Support Shape Effect in Metal Oxide Catalysis: Ceria-Nanoshape-Supported Vanadia Catalysts for Oxidative Dehydrogenation of Isobutane. Journal of Physical Chemistry Letters, 2012, 3, 1517-1522.	4.6	72
48	Probing the Surface Sites of CeO ₂ Nanocrystals with Well-Defined Surface Planes via Methanol Adsorption and Desorption. ACS Catalysis, 2012, 2, 2224-2234.	11.2	165
49	Water Dissociation on CeO ₂ (100) and CeO ₂ (111) Thin Films. Journal of Physical Chemistry C, 2012, 116, 19419-19428.	3.1	178
50	Novel Pulse Electrodeposited Co–Cu–ZnO Nanowire/tube Catalysts for C ₁ –C ₄ Alcohols and C ₂ –C ₆ (Except C ₅) Hydrocarbons from CO and H ₂ . Journal of Physical Chemistry C, 2012, 116, 10924-10933.	3.1	10
51	Gold Nanoparticles Supported on Carbon Nitride: Influence of Surface Hydroxyls on Low Temperature Carbon Monoxide Oxidation. ACS Catalysis, 2012, 2, 1138-1146.	11.2	127
52	Graphitic mesoporous carbon as a support of promoted Rh catalysts for hydrogenation of carbon monoxide to ethanol. Carbon, 2012, 50, 1574-1582.	10.3	36
53	On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. Journal of Catalysis, 2012, 285, 61-73.	6.2	553
54	Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction. Physical Chemistry Chemical Physics, 2011, 13, 2571.	2.8	92

#	Article	IF	CITATIONS
55	Reply to Comment on "Multiwavelength Raman Spectroscopic Study of Silica-Supported Vanadium Oxide Catalysts― Journal of Physical Chemistry C, 2011, 115, 10925-10928.	3.1	2
56	Low-temperature exfoliation of multilayer-graphene material from FeCl3 and CH3NO2 co-intercalated graphite compound. Chemical Communications, 2011, 47, 5265.	4.1	39
57	EXAFS and FT-IR Characterization of Mn and Li Promoted Titania-Supported Rh Catalysts for CO Hydrogenation. ACS Catalysis, 2011, 1, 1298-1306.	11.2	50
58	Interaction of Gold Clusters with a Hydroxylated Surface. Journal of Physical Chemistry Letters, 2011, 2, 1211-1215.	4.6	39
59	CO oxidation on phosphate-supported Au catalysts: Effect of support reducibility on surface reactions. Journal of Catalysis, 2011, 278, 133-142.	6.2	42
60	Structure of Vanadium Oxide Supported on Ceria by Multiwavelength Raman Spectroscopy. Journal of Physical Chemistry C, 2011, 115, 25368-25378.	3.1	91
61	Structure and Reactivity of Alkyl Ethers Adsorbed on CeO2(111) Model Catalysts. Topics in Catalysis, 2011, 54, 56-69.	2.8	6
62	Oxidative dehydrogenation of isobutane on phosphorous-modified graphitic mesoporous carbon. Carbon, 2011, 49, 659-668.	10.3	56
63	Behavior of Au Species in Au/Fe ₂ O ₃ Catalysts Characterized by Novel <i>In Situ</i> Heating Techniques and Aberration-Corrected STEM Imaging. Microscopy and Microanalysis, 2010, 16, 375-385.	0.4	20
64	Effect of Li Promoter on titania-supported Rh catalyst for ethanol formation from CO hydrogenation. Catalysis Today, 2010, 149, 91-97.	4.4	50
65	Probing Defect Sites on CeO ₂ Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O ₂ Adsorption. Langmuir, 2010, 26, 16595-16606.	3.5	889
66	Atomic Structure of Au Nanoparticles on a Silica Support by an X-ray PDF Study. Journal of Physical Chemistry C, 2010, 114, 6983-6988.	3.1	7
67	Multiwavelength Raman Spectroscopic Study of Silica-Supported Vanadium Oxide Catalysts. Journal of Physical Chemistry C, 2010, 114, 412-422.	3.1	80
68	Modification of Au/TiO ₂ Nanosystems by SiO ₂ Monolayers: Toward the Control of the Catalyst Activity and Stability. Journal of Physical Chemistry C, 2010, 114, 2996-3002.	3.1	23
69	Evolution of gold structure during thermal treatment of Au/FeOx catalysts revealed by aberration-corrected electron microscopy. Journal of Electron Microscopy, 2009, 58, 199-212.	0.9	70
70	CO oxidation on Au/FePO4 catalyst: Reaction pathways and nature of Au sites. Journal of Catalysis, 2009, 266, 98-105.	6.2	56
71	Investigation of the selective sites on graphitic carbons for oxidative dehydrogenation of isobutane. Journal of Catalysis, 2009, 267, 158-166.	6.2	42
72	Adsorption and Reaction of Acetone over CeOx(111) Thin Films. Journal of Physical Chemistry C, 2009, 113, 6208-6214.	3.1	46

5

#	Article	IF	CITATIONS
73	Low-Temperature Solution-Phase Synthesis of NiAu Alloy Nanoparticles via Butyllithium Reduction: Influences of Synthesis Details and Application As the Precursor to Active Au-NiO/SiO ₂ Catalysts through Proper Pretreatment. Journal of Physical Chemistry C, 2009, 113, 5758-5765.	3.1	50
74	DRIFTS-QMS Study of Room Temperature CO Oxidation on Au/SiO ₂ Catalyst: Nature and Role of Different Au Species. Journal of Physical Chemistry C, 2009, 113, 3726-3734.	3.1	79
75	Open-Cage Fullerene-like Graphitic Carbons as Catalysts for Oxidative Dehydrogenation of Isobutane. Journal of the American Chemical Society, 2009, 131, 7735-7741.	13.7	81
76	Temperature evolution of structure and bonding of formic acid and formate on fully oxidized and highly reduced CeO2(111). Physical Chemistry Chemical Physics, 2009, 11, 11171.	2.8	61
77	Infrared Study of CO ₂ Sorption over "Molecular Basket―Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve. Journal of Physical Chemistry C, 2009, 113, 7260-7268.	3.1	330
78	Behavior of Au Species in Au/FeOx Catalysts as a Result of In-Situ Thermal Treatments, Characterized via Aberration-Corrected STEM Imaging. Microscopy and Microanalysis, 2009, 15, 1482-1483.	0.4	4
79	Novel Au/TiO2/Al2O3·ÂxH2O catalysts for CO oxidation. Catalysis Letters, 2008, 121, 209-218.	2.6	17
80	Metal Phosphates as a New Class of Supports for Gold Nanocatalysts. Catalysis Letters, 2008, 126, 20-30.	2.6	64
81	In Situ Phase Separation of NiAu Alloy Nanoparticles for Preparing Highly Active Au/NiO CO Oxidation Catalysts. ChemPhysChem, 2008, 9, 2475-2479.	2.1	91
82	Toward Environmentally Benign Oxidations: Bulk Mixed Moâ€Vâ€(Teâ€Nb)â€O M1â€Phase Catalysts for the Selective Ammoxidation of Propane. ChemSusChem, 2008, 1, 519-523.	6.8	11
83	Adsorption and dissociation of methanol on the fully oxidized and partially reduced (111) cerium oxide surface: Dependence on the configuration of the cerium 4f electrons. Surface Science, 2008, 602, 162-175.	1.9	61
84	Promotion of Au(en)2Cl3-Derived Au/Fumed SiO2 by Treatment with KMnO4. Journal of Physical Chemistry C, 2008, 112, 8349-8358.	3.1	28
85	Surface Modification of Au/TiO ₂ Catalysts by SiO ₂ via Atomic Layer Deposition. Journal of Physical Chemistry C, 2008, 112, 9448-9457.	3.1	121
86	Colloidal deposition synthesis of supported gold nanocatalysts based on Au–Fe3O4 dumbbell nanoparticles. Chemical Communications, 2008, , 4357.	4.1	113
87	Oxygen-assisted reduction of Au species on Au/SiO2 catalyst in room temperature CO oxidation. Chemical Communications, 2008, , 3308.	4.1	29
88	Growth and Characterization of Rh and Pd Nanoparticles on Oxidized and Reduced CeOx(111) Thin Films by Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2008, 112, 9336-9345.	3.1	73
89	XANES Study of Hydrothermal Moâ^'V-Based Mixed Oxide M1-Phase Catalysts for the (Amm)oxidation of Propane. Chemistry of Materials, 2008, 20, 6611-6616.	6.7	25
90	Gold supported on microporous aluminophosphate AlPO4-H1 for selective oxidation of CO in a H2-rich stream. Studies in Surface Science and Catalysis, 2007, , 1065-1071.	1.5	4

#	Article	IF	CITATIONS
91	Local atomic structure in disordered and nanocrystalline catalytic materials. Zeitschrift Fur Kristallographie - Crystalline Materials, 2007, 222, .	0.8	9
92	Structural Investigation of Au Catalysts on TiO ₂ â^'SiO ₂ Supports: Nature of the Local Structure of Ti and Au Atoms by EXAFS and XANES. Journal of Physical Chemistry C, 2007, 111, 17322-17332.	3.1	32
93	Operando studies of desorption, reaction and carbonate formation during CO oxidation by Au/TiO2 catalysts. Catalysis Today, 2007, 126, 135-142.	4.4	42
94	Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor. Applied Catalysis A: General, 2007, 326, 89-99.	4.3	145
95	Au/PO43â^'/TiO2 and PO43â^'/Au/TiO2 catalysts for CO oxidation: Effect of synthesis details on catalytic performance. Applied Catalysis A: General, 2007, 327, 226-237.	4.3	48
96	Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives. Journal of Molecular Catalysis A, 2007, 273, 186-197.	4.8	102
97	Gold nanoparticles on electroless-deposition-derived MnOx/C: Synthesis, characterization, and catalytic CO oxidation. Journal of Catalysis, 2007, 252, 119-126.	6.2	41
98	Role of the nanoscale in catalytic CO oxidation by supported Au and Pt nanostructures. Physical Review B, 2007, 76, .	3.2	122
99	Rational design of gold catalysts with enhanced thermal stability: post modification of Au/TiO2 by amorphous SiO2 decoration. Catalysis Letters, 2007, 116, 128-135.	2.6	65
100	Gold Catalysts Supported on Nanostructured Materials: Support Effects. , 2007, , 55-71.		2
101	Preparation of Highly Active Silica-Supported Au Catalysts for CO Oxidation by a Solution-Based Technique. Journal of Physical Chemistry B, 2006, 110, 10842-10848.	2.6	194
102	Nanoengineering catalyst supports via layer-by-layer surface functionalization. Topics in Catalysis, 2006, 39, 199-212.	2.8	40
103	Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2. Journal of Catalysis, 2006, 241, 56-65.	6.2	237
104	CO desorption and oxidation on CeO2-supported Rh: Evidence for two types of Rh sites. Journal of Catalysis, 2006, 243, 158-164.	6.2	17
105	Ultrastable Gold Nanocatalyst Supported by Nanosized Non-Oxide Substrate. Angewandte Chemie - International Edition, 2006, 45, 3614-3618.	13.8	103
106	Adsorption, desorption, and dissociation of benzene onTiO2(110)andPdâ^•TiO2(110): Experimental characterization and first-principles calculations. Physical Review B, 2006, 74, .	3.2	20
107	Facile one-pot synthesis of gold nanoparticles stabilized with bifunctional amino/siloxy ligands. Journal of Colloid and Interface Science, 2005, 287, 360-365.	9.4	28
108	Activated carbons for selective catalytic oxidation of hydrogen sulfide to sulfur. Carbon, 2005, 43, 1087-1090.	10.3	22

#	Article	IF	CITATIONS
109	Effect of Supporting Surface Layers on Catalytic Activities of Gold Nanoparticles in CO Oxidation. Journal of Physical Chemistry B, 2005, 109, 15489-15496.	2.6	67
110	Transient studies of the mechanisms of CO oxidation over Au/TiO2 using time-resolved FTIR spectroscopy and product analysis. Journal of Catalysis, 2005, 236, 392-400.	6.2	50
111	Powder XRD analysis and catalysis characterization of ultra-small gold nanoparticles deposited on titania-modified SBA-15. Catalysis Communications, 2005, 6, 404-408.	3.3	73
112	Preparation and Comparison of Supported Gold Nanocatalysts on Anatase, Brookite, Rutile, and P25 Polymorphs of TiO2for Catalytic Oxidation of CO. Journal of Physical Chemistry B, 2005, 109, 10676-10685.	2.6	146
113	Desulfurization of Gaseous Fuels Using Activated Carbons as Catalysts for the Selective Oxidation of Hydrogen Sulfide. Energy & Fuels, 2005, 19, 1774-1782.	5.1	41
114	Nonhydrolytic Layer-by-Layer Surface Solâ^'Gel Modification of Powdered Mesoporous Silica Materials with TiO2. Chemistry of Materials, 2005, 17, 1923-1925.	6.7	54
115	Ultrastable Au Nanocatalyst Supported on Surface-Modified TiO2Nanocrystals. Journal of the American Chemical Society, 2005, 127, 10480-10481.	13.7	202
116	Comparison of Au Catalysts Supported on Mesoporous Titania and Silica: Investigation of Au Particle Size Effects and Metal-Support Interactions. Catalysis Letters, 2004, 95, 99-106.	2.6	134
117	H2 reduction of CeO2(111) surfaces via boundary Rhî—,O mediation. Journal of Catalysis, 2004, 222, 167-173.	6.2	19
118	Preparation of bicontinuous mesoporous silica and organosilica materials containing gold nanoparticles by co-synthesis method. Microporous and Mesoporous Materials, 2004, 70, 71-80.	4.4	37
119	13C NMR Characterization of the Organic Constituents in Ligand-Modified Hexagonal Mesoporous Silicas:Â Media for the Synthesis of Small, Uniform-Size Gold Nanoparticles. Langmuir, 2004, 20, 9577-9584.	3.5	7
120	Synthesis of Ordered Mixed Titania and Silica Mesostructured Monoliths for Gold Catalysts. Journal of Physical Chemistry B, 2004, 108, 20038-20044.	2.6	42
121	Brookite-supported highly stable gold catalytic system for CO oxidation. Chemical Communications, 2004, , 1918-1919.	4.1	70
122	Surface Solâ^'Gel Modification of Mesoporous Silica Materials with TiO2for the Assembly of Ultrasmall Gold Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 2793-2796.	2.6	142
123	XAS Study of Au Supported on TiO2:Â Influence of Oxidation State and Particle Size on Catalytic Activity. Journal of Physical Chemistry B, 2004, 108, 15782-15790.	2.6	147
124	Coassembly Synthesis of Ordered Mesoporous Silica Materials Containing Au Nanoparticles. Langmuir, 2003, 19, 3974-3980.	3.5	94
125	Quantum Antidot Formation and Correlation to Optical Shift of Gold Nanoparticles Embedded in MgO. Physical Review Letters, 2002, 88, 175502.	7.8	29
126	Uniform formation of uranium oxide nanocrystals inside ordered mesoporous hosts and their potential applications as oxidative catalysts. Chemical Communications, 2002, , 2406-2407.	4.1	36

#	Article	IF	CITATIONS
127	Coverage dependent dissociation of NO on Rh supported on cerium oxide thin films. Surface Science, 2002, 511, L293-L297.	1.9	27
128	Enhancement of dissociation by metal-support interaction: reaction of NO on Rh supported by ceria films of controlled oxidation state. Surface Science, 2001, 470, 243-254.	1.9	25
129	The Interaction between NO and CO on Rh-Loaded CeOx(111). Journal of Catalysis, 2000, 195, 169-179.	6.2	31
130	Adsorption and reaction of H2O and CO on oxidized and reduced Rh/CeOx(111) surfaces. Surface Science, 2000, 457, 51-62.	1.9	146
131	Structure of Pt Overlayers on ZnO(0001) and ZnO(0001Ì") Surfacesâ€. Journal of Physical Chemistry B, 2000, 104, 3028-3034.	2.6	14
132	Chemisorption and Reaction of NO and N2O on Oxidized and Reduced Ceria Surfaces Studied by Soft X-Ray Photoemission Spectroscopy and Desorption Spectroscopy. Journal of Catalysis, 1999, 186, 296-309.	6.2	112
133	CO DISSOCIATION ON RH DEPOSITED ON REDUCED CERIUM OXIDE THIN FILMS. Journal of Catalysis, 1999, 188, 340-345.	6.2	70
134	Ordered cerium oxide thin films grown on Ru(0001) and Ni(111). Surface Science, 1999, 429, 186-198.	1.9	248
135	Chemisorption and Reaction of Sulfur Dioxide with Oxidized and Reduced Ceria Surfaces. Journal of Physical Chemistry B, 1999, 103, 11308-11317.	2.6	65
136	XANES studies of the reduction behavior of (Ce1-yZry)O2 and Rh/(Ce1-yZry)O2. Catalysis Letters, 1998, 51, 133-138.	2.6	81
137	Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surface Science, 1998, 409, 307-319.	1.9	863
138	Ion scattering study of the Zn and oxygen-terminated basal plane surfaces of ZnO. Surface Science, 1998, 410, 106-122.	1.9	35
139	Surface studies of model supported catalysts: NO adsorption on Rh/CeO2(001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1997, 15, 1647-1652.	2.1	53
140	Geometric and electronic structure of sulfided Ni films on W(001) studied by low-energy alkali ion scattering and soft X-ray photoemission. Surface Science, 1996, 369, 231-247.	1.9	2
141	Laser desorption from and reconstruction on Si(100) surfaces studied by scanning tunneling microscopy. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 918.	1.6	6
142	The nature of the sulfur induced surface reconstruction on Ni(111). Surface Science, 1995, 323, L287-L292.	1.9	45
143	Core-level photoemission and alkali ion scattering structure analysis of Ni adsorption and surface alloying on W(001). Surface Science, 1995, 339, 68-82.	1.9	9
144	Comparison of experimental and simulated low energy alkali ion scattering. Nuclear Instruments & Methods in Physics Research B, 1994, 90, 286-290.	1.4	4

#	Article	IF	CITATIONS
145	Sulfidation of W(001) studied by low-energy ion scattering. Surface Science, 1994, 317, 341-352.	1.9	12
146	Structure of the p(2 × 1)-oxygen/Mo0.75Re0.25(001) surface studied by low energy Li+ ion scattering. Surface Science, 1994, 301, 313-325.	1.9	8
147	Surface segregation inMo0.75Re0.25(001) studied by low-energy alkali-ion scattering. Physical Review B, 1993, 48, 1718-1725.	3.2	33
148	Separation of kinetic and potential electron emission arising from slow multicharged ion-surface interactions. Physical Review Letters, 1993, 71, 291-294.	7.8	39
149	Work-function dependence of above-surface neutralization of multicharged ions. Physical Review A, 1993, 48, 4479-4484.	2.5	25
150	Formation of stable, two-dimensional alloy-surface phases: Sn on Cu(111), Ni(111), and Pt(111). Physical Review B, 1992, 46, 7868-7872.	3.2	103
151	Surface structure analysis of Sn on Ni(111) by low energy alkali ion scattering. Surface Science, 1992, 273, 341-352.	1.9	40
152	Interaction of S with W(001). Surface Science, 1992, 277, 64-76.	1.9	54
153	Structure analysis of S adsorbed on Ni(111) by low energy Li+ ion scattering. Surface Science, 1992, 276, 262-272.	1.9	34
154	Computer simulations of relaxation processes in scattering of multi-charged ions from metal surfaces. Nuclear Instruments & Methods in Physics Research B, 1992, 67, 126-131.	1.4	4
155	Surface structure determination of Sn deposited on Pt(111) by low energy alkali ion scattering. Surface Science, 1991, 254, 45-57.	1.9	126
156	Electron emission during interactions of multicharged N and Ar ions with Au(110) and Cu(001) surfaces. Physical Review A, 1991, 44, 7214-7228.	2.5	77
157	Evidence for above-surface and subsurface neutralization during interactions of highly charged ions with a metal target. Physical Review Letters, 1991, 67, 723-726.	7.8	129
158	Effects of preadsorbed oxygen on the bonding and desorption kinetics of CO on Ni(110). Journal of Chemical Physics, 1991, 94, 6264-6273.	3.0	9
159	The kinetics of CO desorption from Ni(110). Journal of Chemical Physics, 1990, 93, 787-794.	3.0	41
160	Surface structure of stepped NiAl(111) by low energy Li+ ion scattering. Surface Science, 1990, 236, 122-134.	1.9	31
161	Interaction of Cu overlayers with W(001) studied by lowâ€energy alkali ion scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1942-1948.	2.1	10
162	The structure of oxygen on W(001) by low energy ion scattering. Surface Science, 1989, 210, 481-500.	1.9	32

#	Article	IF	CITATIONS
163	Formation of subsurface carbon induced by oxygen adsorption on carbon-covered W(001). Surface Science, 1989, 210, 501-519.	1.9	18
164	INNER-SHELL PROCESSES AS PROBES OF MULTICHARGED ION NEUTRALIZATION AT SURFACES. Journal De Physique Colloque, 1989, 50, C1-263-C1-275.	0.2	18
165	The structure and composition of the NiAl(110) and NiAl(100) surfaces. Surface Science, 1988, 199, 141-153.	1.9	116
166	The structure of the carburized W(001) surface. Surface Science, 1988, 193, 455-474.	1.9	29
167	Summary Abstract: Structure and composition of the NiAl(110) and NiAl(100) surfaces by lowâ€energy alkali ion scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 811-812.	2.1	7
168	Charge exchange at molecular-orbital pseudocrossings as an important mechanism for nonkinetic-electron emission in slow-multicharged-ion (v <v0) metal-surface="" physical<br="" scattering.="">Review A, 1988, 38, 2294-2304.</v0)>	2.5	26
169	Observation of the neutralization of highly charged ions interacting with a metal surface. Physical Review A, 1987, 35, 3176-3179.	2.5	39
170	Summary Abstract: Evidence for subsurface carbon on Mo(111) by low energy alkali ion scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 694-695.	2.1	3
171	The adsorption of ethylene on Mo(111): Evidence for a subsurface carbon. Surface Science, 1987, 184, 319-334.	1.9	22
172	Reply to "comment of L. Guczi and G. Kisfaludi on â€~surface characterization of amorphous and crystallized Fe80B20' by D.R. Huntley, S.H. Overbury, D.M. Zehner, J.D. Budai and W.E. Brower, Jr.― Applied Surface Science, 1987, 29, 393-394.	6.1	1
173	The use of low energy alkali ion scattering as a probe of surface structure. Nuclear Instruments & Methods in Physics Research B, 1987, 27, 65-77.	1.4	35
174	Low energy ion scattering from the Au(110) surface - structural results. Nuclear Instruments & Methods in Physics Research B, 1987, 23, 374-378.	1.4	37
175	Charge exchange processes between highly charged ions and metal surfaces. Nuclear Instruments & Methods in Physics Research B, 1987, 23, 234-238.	1.4	37
176	Surface layer relaxation on Mo(111) measured by low energy alkali ion scattering. Surface Science, 1986, 175, 123-140.	1.9	26
177	Electron emission from the interaction of multiply charged ions with a Au(110) surface. Surface Science, 1986, 178, 359-366.	1.9	47
178	Surface characterization of amorphous and crystallized Fe80B20. Applied Surface Science, 1986, 27, 180-198.	6.1	21
179	Determination of the scattering potential for low energy alkali-metal ions from a Mo(001) surface. Physical Review B, 1985, 32, 6278-6285.	3.2	56
180	Summary Abstract: The structure of atomic sulfur overlayers on the Mo(001) surface using low energy alkali ion scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1985, 3, 1640-1641.	2.1	12

#	Article	IF	CITATIONS
181	Low-EnergyK+-Ion Scattering as a Probe of Adsorbate Ordering. Physical Review Letters, 1984, 53, 481-484.	7.8	8
182	Adsorbate induced neutralization effects in low energy alkali and inert gas ion scattering. Nuclear Instruments & Methods in Physics Research B, 1984, 2, 384-390.	1.4	15
183	Low energy alkali ion scattering from a clean and adsorbate covered Mo(001) surface. Nuclear Instruments & Methods in Physics Research B, 1984, 2, 448-452.	1.4	17
184	Focused scattering of low energy Li+ from Mo(001): Experimental and computer simulation results. Surface Science, 1983, 125, 377-395.	1.9	21
185	The structure of atomic oxygen and carbon overlayers on the Mo(001) surface studied by low energy ion scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1983, 1, 1055-1058.	2.1	41
186	Resonant coherent excitation of fast heavy ions in crystals. Nuclear Instruments & Methods in Physics Research, 1982, 194, 327-336.	0.9	12
187	A comparison of scattering of low energy K+ and Ar+ from the Au(110) surface. Surface Science, 1981, 112, 23-37.	1.9	41
188	Investigation of the structure of Au(110) using angle resolved low energy K+ ion backscattering. Surface Science, 1981, 109, 239-262.	1.9	98
189	Energy and angular distribution of low energy H+ and D+ backscattered from polycrystalline carbon. Journal of Nuclear Materials, 1980, 93-94, 529-535.	2.7	22
190	Neutralization in surface scattering of low energy H+ by polycrystalline graphite. Nuclear Instruments & Methods, 1980, 170, 543-548.	1.2	18
191	Energy loss, angular distributions and charge fractions of low energy hydrogen transmitted through thin carbon foils. Radiation Effects, 1979, 41, 219-227.	0.4	42
192	The surface composition of Au–Sn alloys determined by Auger electron spectroscopy. Journal of Chemical Physics, 1977, 66, 3181-3188.	3.0	43
193	The surface composition of the gold-palladium binary alloy system. Surface Science, 1977, 65, 578-592.	1.9	112
194	The surface composition of the silver—Gold system by Auger electron spectroscopy. Surface Science, 1976, 55, 209-226.	1.9	84
195	Surface composition of binary systems. Prediction of surface phase diagrams of solid solutions. Chemical Reviews, 1975, 75, 547-560.	47.7	548
196	Auger electron spectroscopy of alloy surfaces. Faraday Discussions of the Chemical Society, 1975, 60, 279.	2.2	34