Martin Rosenthal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/485412/publications.pdf

Version: 2024-02-01

25 papers ci

976 citations

567281 15 h-index 25 g-index

26 all docs 26 docs citations

times ranked

26

1426 citing authors

#	Article	IF	CITATIONS
1	Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science, 2018, 359, 1509-1513.	12.6	345
2	Exploring the Origin of Crystalline Lamella Twist in Semi-Rigid Chain Polymers: the Model of Keith and Padden revisited. Macromolecules, 2012, 45, 7454-7460.	4.8	69
3	From Channelâ€Forming Ionic Liquid Crystals Exhibiting Humidityâ€Induced Phase Transitions to Nanostructured Ionâ€Conducting Polymer Membranes. Advanced Materials, 2013, 25, 3543-3548.	21.0	65
4	High-resolution thermal imaging with a combinationÂof nano-focus X-ray diffraction andÂultra-fast chip calorimetry. Journal of Synchrotron Radiation, 2014, 21, 223-228.	2.4	56
5	Mapping the 3D orientation of nanocrystals and nanostructures in human bone: Indications of novel structural features. Science Advances, 2020, 6, eaba4171.	10.3	51
6	Switching Chirality of Hybrid Left–Right Crystalline Helicoids Built of Achiral Polymer Chains: When Right to Left Becomes Left to Right. Macromolecules, 2014, 47, 8295-8304.	4.8	47
7	Correlation between mechanical properties and orientation of the crystalline and mesomorphic phases in isotactic polypropylene fibers. Polymer, 2011, 52, 5630-5643.	3.8	34
8	Smart Energetic Nanosized Co-Crystals: Exploring Fast Structure Formation and Decomposition. Crystal Growth and Design, 2016, 16, 432-439.	3.0	34
9	On the Nature of Chirality Imparted to Achiral Polymers by the Crystallization Process. Angewandte Chemie - International Edition, 2011, 50, 8881-8885.	13.8	32
10	Strained Bottlebrushes in Super-Soft Physical Networks. ACS Macro Letters, 2019, 8, 530-534.	4.8	32
11	Serial femtosecond crystallography on in vivo-grown crystals drives elucidation of mosquitocidal Cyt1Aa bioactivation cascade. Nature Communications, 2020, 11, 1153.	12.8	31
12	Thermal Transformations of Self-Assembled Gold Glyconanoparticles Probed by Combined Nanocalorimetry and X-ray Nanobeam Scattering. Langmuir, 2015, 31, 529-534.	3.5	24
13	Shaping highly regular glass architectures: A lesson from nature. Science Advances, 2017, 3, eaao2047.	10.3	23
14	What Thermal Analysis Can Tell Us About Melting of Semicrystalline Polymers: Exploring the General Validity of the Technique. ACS Macro Letters, 2018, 7, 1426-1431.	4.8	23
15	Nanobeam X-ray fluorescence and diffraction computed tomography on human bone with a resolution better than 120Ânm. Journal of Structural Biology, 2020, 212, 107631.	2.8	18
16	Nonâ€Radial Growth of Helical Homopolymer Crystals: Breaking the Paradigm of the Polymer Spherulite Microstructure. Macromolecular Rapid Communications, 2013, 34, 1815-1819.	3.9	13
17	Gradients of microstructure, stresses and mechanical properties in a multi-layered diamond thin film revealed by correlative cross-sectional nano-analytics. Carbon, 2019, 144, 666-674.	10.3	12
18	Primary Chemical Sequence Ultimately Determines Crystal Thickness in Segmented All-Aliphatic Copolymers. Macromolecules, 2014, 47, 7890-7899.	4.8	11

#	Article	IF	CITATION
19	Microstructure of Banded Polymer Spherulites: New Insights from Synchrotron Nanofocus X-Ray Scattering. Advances in Polymer Science, 2016, , 95-126.	0.8	10
20	Amorphous-to-crystal transition in the layer-by-layer growth of bivalve shell prisms. Acta Biomaterialia, 2022, 142, 194-207.	8.3	10
21	Reorganization of semicrystalline polymers on heating: Analyzing common misconceptions in the interpretation of calorimetric data. Response on the "Comment on "Re-exploring the double-melting behavior of semirigid-chain polymers with an in-situ combination of synchrotron nanofocus X-ray scattering and nanocalorimetry―by Dimitri A. Ivanov et al. [Euro. Polym. J. 81 (2016) 598–606.]―	5.4	9
22	Assessing Fast Structure Formation Processes in Isotactic Polypropylene with a Combination of Nanofocus X-ray Diffraction and In Situ Nanocalorimetry. Nanomaterials, 2021, 11, 2652.	4.1	5
23	Preparation of Polyesteramides in a Reactive Extrusion Process. Macromolecular Materials and Engineering, 2014, 299, 1343-1351.	3.6	4
24	Microstructuring to Improve the Thermal Stability of GeSn Layers. ACS Applied Materials & Eamp; Interfaces, 2022, 14, 22270-22277.	8.0	3
25	Thermal Properties of Poly(3-(2′-Ethyl)Hexylthiophene): Study with a Real-Time Combination of Synchrotron X-Ray Scattering and Ultrafast Chip Calorimetry. Key Engineering Materials, 0, 869, 375-381.	0.4	1