List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4854085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flexible linker modulates the binding affinity of the TP901â€I CI phage repressor to DNA. FEBS Journal, 2022, 289, 1135-1148.	4.7	3
2	Protonation State of an Important Histidine from High Resolution Structures of Lytic Polysaccharide Monooxygenases. Biomolecules, 2022, 12, 194.	4.0	12
3	Mechanism and biomass association of glucuronoyl esterase: an α/β hydrolase with potential in biomass conversion. Nature Communications, 2022, 13, 1449.	12.8	15
4	Identification of the molecular determinants driving the substrate specificity of fungal lytic polysaccharide monooxygenases (LPMOs). Journal of Biological Chemistry, 2021, 296, 100086.	3.4	19
5	Estimating the accuracy of calculated electron paramagnetic resonance hyperfine couplings for a lytic polysaccharide monooxygenase. Computational and Structural Biotechnology Journal, 2021, 19, 555-567.	4.1	11
6	Calmodulin complexes with brain and muscle creatine kinase peptides. Current Research in Structural Biology, 2021, 3, 121-132.	2.2	5
7	Lytic polysaccharide monooxygenases and other histidine-brace copper proteins: structure, oxygen activation and biotechnological applications. Biochemical Society Transactions, 2021, 49, 531-540.	3.4	35
8	Guest-protein incorporation into solvent channels of a protein host crystal (hostal). Acta Crystallographica Section D: Structural Biology, 2021, 77, 471-485.	2.3	1
9	Probing the determinants of the transglycosylation/hydrolysis partition in a retaining α-l-arabinofuranosidase. New Biotechnology, 2021, 62, 68-78.	4.4	12
10	Copper binding and reactivity at the histidine brace motif: insights from mutational analysis of the <i>Pseudomonas fluorescens</i> copper chaperone CopC. FEBS Letters, 2021, 595, 1708-1720.	2.8	9
11	Structural and Functional Analysis of a Multimodular Hyperthermostable Xylanase-Glucuronoyl Esterase from <i>Caldicellulosiruptor kristjansonii</i> . Biochemistry, 2021, 60, 2206-2220.	2.5	7
12	Crystal structures of Val58lle tryptophan repressor in a domain-swapped array in the presence and absence of <scp>L</scp> -tryptophan. Acta Crystallographica Section F, Structural Biology Communications, 2021, 77, 215-225.	0.8	0
13	Inhibition of lytic polysaccharide monooxygenase by natural plant extracts. New Phytologist, 2021, 232, 1337-1349.	7.3	12
14	Engineering the substrate binding site of the hyperthermostable archaeal endo-β-1,4-galactanase from Ignisphaera aggregans. Biotechnology for Biofuels, 2021, 14, 183.	6.2	6
15	Characterization of the genetic switch from phage É,13 important for <i>Staphylococcus aureus</i> colonization in humans. MicrobiologyOpen, 2021, 10, e1245.	3.0	2
16	Scission of Glucosidic Bonds by a <i>Lentinus similis</i> Lytic Polysaccharide Monooxygenases Is Strictly Dependent on H ₂ O ₂ while the Oxidation of Saccharide Products Depends on O ₂ . ACS Catalysis, 2021, 11, 13848-13859.	11.2	17
17	A fungal family of lytic polysaccharide monooxygenase-like copper proteins. Nature Chemical Biology, 2020, 16, 345-350.	8.0	63
18	Biochemical evidence of both copper chelation and oxygenase activity at the histidine brace. Scientific Reports, 2020, 10, 16369.	3.3	27

#	Article	IF	CITATIONS
19	Repression of the lysogenic PR promoter in bacteriophage TP901-1 through binding of a CI-MOR complex to a composite OM-OR operator. Scientific Reports, 2020, 10, 8659.	3.3	6
20	Revealing the mechanism of repressor inactivation during switching of a temperate bacteriophage. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20576-20585.	7.1	6
21	Oligosaccharide Binding and Thermostability of Two Related AA9 Lytic Polysaccharide Monooxygenases. Biochemistry, 2020, 59, 3347-3358.	2.5	17
22	A lytic polysaccharide monooxygenase-like protein functions in fungal copper import and meningitis. Nature Chemical Biology, 2020, 16, 337-344.	8.0	61
23	An 1,4-α-Glucosyltransferase Defines a New Maltodextrin Catabolism Scheme in Lactobacillus acidophilus. Applied and Environmental Microbiology, 2020, 86, .	3.1	8
24	Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Science Advances, 2019, 5, eaaw7696.	10.3	120
25	Insights into an unusual Auxiliary Activity 9 family member lacking the histidine brace motif of lytic polysaccharide monooxygenases. Journal of Biological Chemistry, 2019, 294, 17117-17130.	3.4	30
26	Structure of <i>Aspergillus aculeatus</i> β-1,4-galactanase in complex with galactobiose. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 399-404.	0.8	6
27	Substrate preference of an ABC importer corresponds to selective growth on β-(1,6)-galactosides in Bifidobacterium animalis subsp. lactis. Journal of Biological Chemistry, 2019, 294, 11701-11711.	3.4	21
28	Structure–function analyses reveal that a glucuronoyl esterase from Teredinibacter turnerae interacts with carbohydrates and aromatic compounds. Journal of Biological Chemistry, 2019, 294, 6635-6644.	3.4	21
29	Further structural studies of the lytic polysaccharide monooxygenase <i>Ao</i> AA13 belonging to the starch-active AA13 family. Amylase, 2019, 3, 41-54.	1.6	4
30	Structural and biochemical studies of the glucuronoyl esterase OtCE15A illuminate its interaction with lignocellulosic components. Journal of Biological Chemistry, 2019, 294, 19978-19987.	3.4	17
31	Structure and Dynamics of a Promiscuous Xanthan Lyase from Paenibacillus nanensis and the Design of Variants with Increased Stability and Activity. Cell Chemical Biology, 2019, 26, 191-202.e6.	5.2	13
32	Structure of a hyperthermostable carbonic anhydrase identified from an active hydrothermal vent chimney. Enzyme and Microbial Technology, 2018, 114, 48-54.	3.2	14
33	Structural basis of the bacteriophage <scp>TP</scp> 901â€4 <scp>CI</scp> repressor dimerization and interaction with <scp>DNA</scp> . FEBS Letters, 2018, 592, 1738-1750.	2.8	5
34	Target highlights from the first postâ€PSI CASP experiment (CASP12, May–August 2016). Proteins: Structure, Function and Bioinformatics, 2018, 86, 27-50.	2.6	11
35	Recent insights into lytic polysaccharide monooxygenases (LPMOs). Biochemical Society Transactions, 2018, 46, 1431-1447.	3.4	82
36	Structure of a lytic polysaccharide monooxygenase from Aspergillus fumigatus and an engineered thermostable variant. Carbohydrate Research, 2018, 469, 55-59.	2.3	35

#	Article	IF	CITATIONS
37	Biochemical and structural features of diverse bacterial glucuronoyl esterases facilitating recalcitrant biomass conversion. Biotechnology for Biofuels, 2018, 11, 213.	6.2	35
38	NCAM2 Fibronectin type-III domains form a rigid structure that binds and activates the Fibroblast Growth Factor Receptor. Scientific Reports, 2018, 8, 8957.	3.3	16
39	Learning from oligosaccharide soaks of crystals of an AA13 lytic polysaccharide monooxygenase: crystal packing, ligand binding and active-site disorder. Acta Crystallographica Section D: Structural Biology, 2017, 73, 64-76.	2.3	16
40	Unliganded and substrate bound structures of the cellooligosaccharide active lytic polysaccharide monooxygenase LsAA9A at low pH. Carbohydrate Research, 2017, 448, 187-190.	2.3	25
41	Discovery of \hat{I}_{\pm} -l-arabinopyranosidases from human gut microbiome expands the diversity within glycoside hydrolase family 42. Journal of Biological Chemistry, 2017, 292, 21092-21101.	3.4	8
42	Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates. Nature Communications, 2017, 8, 1064.	12.8	134
43	Expression, refolding and spectroscopic characterization of fibronectin type III (FnIII)-homology domains derived from human fibronectin leucine rich transmembrane protein (FLRT)-1, -2, and -3. PeerJ, 2017, 5, e3550.	2.0	3
44	Structural characterization of the thermostable <i>Bradyrhizobium japonicum</i> <scp>D</scp> -sorbitol dehydrogenase. Acta Crystallographica Section F, Structural Biology Communications, 2016, 72, 846-852.	0.8	7
45	Structural and dynamics studies of a truncated variant of CI repressor from bacteriophage TP901-1. Scientific Reports, 2016, 6, 29574.	3.3	13
46	Lytic polysaccharide monooxygenases: a crystallographer's view on a new class of biomass-degrading enzymes. IUCrJ, 2016, 3, 448-467.	2.2	84
47	The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nature Chemical Biology, 2016, 12, 298-303.	8.0	264
48	NAC Transcription Factors: From Structure to Function in Stress-Associated Networks. , 2016, , 199-212.		13
49	Structure of dimeric, recombinant Sulfolobus solfataricus phosphoribosyl diphosphate synthase: a bent dimer defining the adenine specificity of the substrate ATP. Extremophiles, 2015, 19, 407-415.	2.3	3
50	Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nature Communications, 2015, 6, 5961.	12.8	254
51	Effect of mutations on the thermostability of Aspergillus aculeatus β-1,4-galactanase. Computational and Structural Biotechnology Journal, 2015, 13, 256-264.	4.1	14
52	A β1â€6/β1â€3 galactosidase from B ifidobacterium animalis subsp. lactis †B lâ€04 gives insight into subâ€specificities of βâ€galactoside catabolism within B ifidobacterium. Molecular Microbiology, 2014, 94, 1024-1040.	2.5	35
53	Purification, crystal structure determination and functional characterization of type III antifreeze proteins from the European eelpout Zoarces viviparus. Cryobiology, 2014, 69, 163-168.	0.7	15
54	An l-glucitol oxidizing dehydrogenase from Bradyrhizobium japonicum USDA 110 for production of d-sorbose with enzymatic or electrochemical cofactor regeneration. Applied Microbiology and Biotechnology, 2014, 98, 3023-3032.	3.6	9

#	Article	IF	CITATIONS
55	Binding of the N-Terminal Domain of the Lactococcal Bacteriophage TP901-1 CI Repressor to Its Target DNA: A Crystallography, Small Angle Scattering, and Nuclear Magnetic Resonance Study. Biochemistry, 2013, 52, 6892-6904.	2.5	12
56	Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria. Biocatalysis and Biotransformation, 2013, 31, 226-235.	2.0	23
57	Crystallization and preliminary crystallographic analysis of anEscherichia coli-selected mutant of the nuclease domain of the metallonuclease colicin E7. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 551-554.	0.7	2
58	A Snapshot into the Metabolism of Isomalto-oligosaccharides in Probiotic Bacteria. Journal of Applied Glycoscience (1999), 2013, 60, 95-100.	0.7	5
59	DNA binding by the plant-specific NAC transcription factors in crystal and solution: a firm link to WRKY and GCM transcription factors. Biochemical Journal, 2012, 444, 395-404.	3.7	77
60	Enzymology and Structure of the GH13_31 Glucan 1,6-α-Glucosidase That Confers Isomaltooligosaccharide Utilization in the Probiotic Lactobacillus acidophilus NCFM. Journal of Bacteriology, 2012, 194, 4249-4259.	2.2	69
61	A STRUCTURAL OVERVIEW OF GH61 PROTEINS – FUNGAL CELLULOSE DEGRADING POLYSACCHARIDE MONOOXYGENASES. Computational and Structural Biotechnology Journal, 2012, 2, e201209019.	4.1	37
62	Raffinose family oligosaccharide utilisation by probiotic bacteria: insight into substrate recognition, molecular architecture and diversity of GH36 α-galactosidases. Biocatalysis and Biotransformation, 2012, 30, 316-325.	2.0	15
63	Structure-based engineering of glucose specificity in a family 10 xylanase from Streptomyces olivaceoviridis E-86. Process Biochemistry, 2012, 47, 358-365.	3.7	12
64	S3-5 The utilization routes of iso maltooligosaccharides by probiotics : an enzymatic and genetic overview. Bulletin of Applied Glycoscience, 2012, 2, B59.	0.0	0
65	Insights into the oxidative degradation of cellulose by a copper metalloenzyme that exploits biomass components. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15079-15084.	7.1	861
66	Crystal Structure of α-Galactosidase from Lactobacillus acidophilus NCFM: Insight into Tetramer Formation and Substrate Binding. Journal of Molecular Biology, 2011, 412, 466-480.	4.2	63
67	Structure of a dimeric fungal α-type carbonic anhydrase. FEBS Letters, 2011, 585, 1042-1048.	2.8	35
68	Activity of three β-1,4-galactanases on small chromogenic substrates. Carbohydrate Research, 2011, 346, 2028-2033.	2.3	14
69	Rational Engineering of Mannosyl Binding in the Distal Glycone Subsites of <i>Cellulomonas fimi</i> Endo-l²-1,4-mannanase: Mannosyl Binding Promoted at Subsite â^'2 and Demoted at Subsite â^'3,. Biochemistry, 2010, 49, 4884-4896.	2.5	34
70	Structural and Biochemical Studies Elucidate the Mechanism of Rhamnogalacturonan Lyase from Aspergillus aculeatus. Journal of Molecular Biology, 2010, 404, 100-111.	4.2	26
71	Stimulation of Lignocellulosic Biomass Hydrolysis by Proteins of Glycoside Hydrolase Family 61: Structure and Function of a Large, Enigmatic Family. Biochemistry, 2010, 49, 3305-3316.	2.5	679
72	Investigating the binding of βâ€1,4â€galactan to <i>Bacillus licheniformis</i> βâ€1,4â€galactanase by crystallography and computational modeling. Proteins: Structure, Function and Bioinformatics, 2009, 75, 977-989.	2.6	17

#	Article	IF	CITATIONS
73	Crystal Structures of A. acidocaldarius Endoglucanase Cel9A in Complex with Cello-Oligosaccharides: Strong â'' 1 and â'' 2 Subsites Mimic Cellobiohydrolase Activity. Journal of Molecular Biology, 2009, 394, 61-70.	4.2	26
74	Short strong hydrogen bonds in proteins: a case study of rhamnogalacturonan acetylesterase. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 851-863.	2.5	46
75	Identification of Quaternary Structure and Functional Domains of the CI Repressor from Bacteriophage TP901-1. Journal of Molecular Biology, 2008, 376, 983-996.	4.2	19
76	Kinetics and stereochemistry of theCellulomonas fimil ² -mannanase studied using1H-NMR. Biocatalysis and Biotransformation, 2008, 26, 86-95.	2.0	10
77	α-Amylase from mung beans (Vigna radiata) – Correlation of biochemical properties and tertiary structure by homology modelling. Phytochemistry, 2007, 68, 1623-1631.	2.9	39
78	Structure of the Sulfolobus solfataricus α-Glucosidase: Implications for Domain Conservation and Substrate Recognition in CH31. Journal of Molecular Biology, 2006, 358, 1106-1124.	4.2	126
79	Mapping of an Internal Protease Cleavage Site in the Ssy5p Component of the Amino Acid Sensor of Saccharomyces cerevisiae and Functional Characterization of the Resulting Pro- and Protease Domains by Gain-of-Function Genetics. Eukaryotic Cell, 2006, 5, 601-608.	3.4	24
80	Characterization of different crystal forms of the α-glucosidase MalA fromSulfolobus solfataricus. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 1039-1042.	0.7	6
81	DNA-binding specificity and molecular functions of NAC transcription factors. Plant Science, 2005, 169, 785-797.	3.6	171
82	NAC transcription factors: structurally distinct, functionally diverse. Trends in Plant Science, 2005, 10, 79-87.	8.8	1,214
83	The Structure and Characterization of a Modular Endo-β-1,4-mannanase from Cellulomonas fimi,. Biochemistry, 2005, 44, 12700-12708.	2.5	63
84	Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Reports, 2004, 5, 297-303.	4.5	388
85	Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 112-115.	2.5	28
86	The Structure of Endo-β-1,4-galactanase from Bacillus licheniformis in Complex with Two Oligosaccharide Products. Journal of Molecular Biology, 2004, 341, 107-117.	4.2	28
87	Crystallization and preliminary X-ray analysis ofAlicyclobacillus acidocaldariusendoglucanase CelA. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 139-141.	2.5	9
88	The Structure and Specificity ofEscherichia coliMaltose Acetyltransferase Give New Insight into the LacA Family of Acyltransferasesâ€,‡. Biochemistry, 2003, 42, 5225-5235.	2.5	33
89	Structure of two fungal β-1,4-galactanases: Searching for the basis for temperature and pH optimum. Protein Science, 2003, 12, 1195-1204.	7.6	41
90	Lactococcus lactis Dihydroorotate Dehydrogenase A Mutants Reveal Important Facets of the Enzymatic Function. Journal of Biological Chemistry, 2003, 278, 28812-28822.	3.4	28

#	Article	IF	CITATIONS
91	Aspergillus aculeatusî²-1,4-Galactanase:Â Substrate Recognition and Relations to Other Glycoside Hydrolases in Clan GH-Aâ€. Biochemistry, 2002, 41, 15135-15143.	2.5	37
92	The 1.62 Ã structure ofThermoascus aurantiacusendoglucanase: completing the structural picture of subfamilies in glycoside hydrolase family 5. FEBS Letters, 2002, 523, 103-108.	2.8	73
93	Gene cloning, sequencing, and characterization of a family 9 endoglucanase (CelA) with an unusual pattern of activity from the thermoacidophile Alicyclobacillus acidocaldarius ATCC27009. Applied Microbiology and Biotechnology, 2002, 60, 428-436.	3.6	63
94	Crystallization and preliminary X-ray characterization of a thermostable pectate lyase fromThermotoga maritima. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 709-711.	2.5	4
95	Substrate specificity and subsite mobility inT. aurantiacusxylanase 10A. FEBS Letters, 2001, 509, 303-308.	2.8	51
96	Anisotropic refinement of the structure ofThermoascus aurantiacusxylanase I. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 385-392.	2.5	5
97	Crystallization and preliminary X-ray analysis of maltose O-acetyltransferase. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 1915-1918.	2.5	4
98	X-ray crystallographic study of xylopentaose binding toPseudomonas fluorescens xylanase A. Proteins: Structure, Function and Bioinformatics, 2000, 41, 362-373.	2.6	28
99	Characterization and crystallization of an active N-terminally truncated form of the Escherichia coli glycogen branching enzyme. FEBS Journal, 2000, 267, 2150-2155.	0.2	26
100	Xylanase–oligosaccharide interactions studied by a competitive enzyme assay. Enzyme and Microbial Technology, 1999, 25, 701-709.	3.2	18
101	High resolution structure and sequence ofT. aurantiacus Xylanase I: Implications for the evolution of thermostability in family 10 xylanases and enzymes with ??-barrel architecture. Proteins: Structure, Function and Bioinformatics, 1999, 36, 295-306.	2.6	75
102	High resolution structure and sequence of T. aurantiacus xylanase I: implications for the evolution of thermostability in family 10 xylanases and enzymes with (beta)alpha-barrel architecture. Proteins: Structure, Function and Bioinformatics, 1999, 36, 295-306.	2.6	24
103	Superfamilies: the 4/7 superfamily of <i>β α</i> -barrel glycosidases and the right-handed parallel <i>β</i> -helix superfamily. Biochemical Society Transactions, 1998, 26, 190-197.	3.4	12
104	Crystallization and preliminary X-ray analysis of the major endoglucanase fromThermoascus aurantiacus. Acta Crystallographica Section D: Biological Crystallography, 1997, 53, 599-604.	2.5	11
105	Inhibition of sperm-zona binding by suramin, a potential â€~lead' compound for design of new anti-fertility agents. Molecular Human Reproduction, 1996, 2, 597-605.	2.8	25
106	β-Glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes wit 8-fold β/α architecture and with two conserved glutamates near the carboxy-terminal ends of β-strands four and seven. FEBS Letters, 1995, 362, 281-285.	2.8	245
107	Structure of the catalytic core of the family F xylanase from Pseudomonas fluorescens and identification of the xylopentaose-binding sites. Structure, 1994, 2, 1107-1116.	3.3	148
108	Insulin-stimulated GLUT4 glucose transporter recycling. A problem in membrane protein subcellular trafficking through multiple pools. Journal of Biological Chemistry, 1994, 269, 17516-24.	3.4	132