
Paolo Agnolucci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4853426/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Road Emissions in London: Insights from Geographically Detailed Classification and Regression Modelling. Atmosphere, 2021, 12, 188.	2.3	3
2	Long-run trend in agricultural yield and climatic factors in Europe. Climatic Change, 2020, 159, 385-405.	3.6	30
3	Impacts of rising temperatures and farm management practices on global yields of 18 crops. Nature Food, 2020, 1, 562-571.	14.0	70
4	Annual average daily traffic estimation in England and Wales: An application of clustering and regression modelling. Journal of Transport Geography, 2020, 83, 102658.	5.0	23
5	Industrial characteristics and air emissions: Long-term determinants in the UK manufacturing sector. Energy Economics, 2019, 78, 546-566.	12.1	33
6	Trade and trade-offs: Shipping in changing climates. Marine Policy, 2019, 106, 103537.	3.2	17
7	The influence of the global electric power system on terrestrial biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26078-26084.	7.1	27
8	An optimisation framework for the strategic design of synthetic natural gas (BioSNG) supply chains. Applied Energy, 2017, 187, 929-955.	10.1	32
9	Modelling UK sub-sector industrial energy demand. Energy Economics, 2017, 67, 366-374.	12.1	16
10	The causal impact of economic growth on material use in Europe. Journal of Environmental Economics and Policy, 2017, 6, 415-432.	2.5	31
11	Towards a sustainable hydrogen economy: Optimisation-based framework for hydrogen infrastructure development. Computers and Chemical Engineering, 2017, 102, 110-127.	3.8	131
12	Towards a sustainable hydrogen economy: role of carbon price for achieving GHG emission targets. Computer Aided Chemical Engineering, 2016, , 1015-1020.	0.5	5
13	The impact of Chinese carbon emission trading scheme (ETS) on low carbon energy (LCE) investment. Energy Policy, 2016, 89, 271-283.	8.8	121
14	A review of Chinese CO ₂ emission projections to 2030: the role of economic structure and policy. Climate Policy, 2015, 15, S7-S39.	5.1	80
15	Health and climate change: policy responses to protect public health. Lancet, The, 2015, 386, 1861-1914.	13.7	1,311
16	Energy efficiency and time charter rates: Energy efficiency savings recovered by ship owners in the Panamax market. Transportation Research, Part A: Policy and Practice, 2014, 66, 173-184.	4.2	35
17	Designing future hydrogen infrastructure: Insights from analysis at different spatial scales. International Journal of Hydrogen Energy, 2013, 38, 5181-5191.	7.1	71
	The importance of economies of scale transport costs and demand patterns in optimising hydrogen		

The importance of economies of scale, transport costs and demand patterns in optimising hydrogen fuelling infrastructure: An exploration with SHIPMod (Spatial hydrogen infrastructure planning) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 57

PAOLO AGNOLUCCI

#	Article	IF	CITATIONS
19	Industrial energy intensities in the UK: is there a deterministic or stochastic difference among sectors?. Applied Economics, 2011, 43, 1447-1462.	2.2	23
20	Energy Consumption and CO2 Emissions in the German and British Industrial Sectors. , 2011, , 46-83.		1
21	The Effect of the German and UK Environmental Tax Reforms on the Demand for Labour and Energy. , 2011, , 148-171.		2
22	ls Environmental Tax Reform an Appropriate Policy for Industrial Sectors with Different Energy Intensities? An Analysis of UK Industrial Sectors. , 2011, , 84-96.		0
23	Stochastic Trends and Technical Change: The Case of Energy Consumption in the British Industrial and Domestic Sectors. Energy Journal, 2010, 31, 111-136.	1.7	14
24	Different scenarios for achieving radical reduction in carbon emissions: A decomposition analysis. Ecological Economics, 2009, 68, 1652-1666.	5.7	52
25	The energy demand in the British and German industrial sectors: Heterogeneity and common factors. Energy Economics, 2009, 31, 175-187.	12.1	29
26	Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models. Energy Economics, 2009, 31, 316-321.	12.1	230
27	The effect of the German and British environmental taxation reforms: A simple assessment. Energy Policy, 2009, 37, 3043-3051.	8.8	26
28	Factors influencing the likelihood of regulatory changes in renewable electricity policies. Renewable and Sustainable Energy Reviews, 2008, 12, 141-161.	16.4	22
29	The Tyndall decarbonisation scenarios—Part II: Scenarios for a 60% CO2 reduction in the UK. Energy Policy, 2008, 36, 3764-3773.	8.8	43
30	The Tyndall decarbonisation scenarios—Part I: Development of a backcasting methodology with stakeholder participation. Energy Policy, 2008, 36, 3754-3763.	8.8	88
31	New lessons for technology policy and climate change: investment for innovation. Climate Policy, 2007, 7, 156-161.	5.1	3
32	Technological transitions and Strategic Niche Management: the case of the hydrogen economy. International Journal of Environmental Technology and Management, 2007, 7, 644.	0.2	7
33	Uncertainty and the Tyndall decarbonisation scenarios. Global Environmental Change, 2007, 17, 25-36.	7.8	12
34	The importance and the policy impacts of post-contractual opportunism and competition in the English and Welsh non-fossil fuel obligation. Energy Policy, 2007, 35, 475-486.	8.8	11
35	Hydrogen infrastructure for the transport sectorâ~†. International Journal of Hydrogen Energy, 2007, 32, 3526-3544.	7.1	84
36	Renewable electricity policies in The Netherlands. Renewable Energy, 2007, 32, 868-883.	8.9	24

PAOLO AGNOLUCCI

#	Article	IF	CITATIONS
37	Wind electricity in Denmark: A survey of policies, their effectiveness and factors motivating their introduction. Renewable and Sustainable Energy Reviews, 2007, 11, 951-963.	16.4	47
38	Technological change in niches: Auxiliary Power Units and the hydrogen economy. Technological Forecasting and Social Change, 2007, 74, 1394-1410.	11.6	35
39	The effect of financial constraints, technological progress and long-term contracts on tradable green certificates. Energy Policy, 2007, 35, 3347-3359.	8.8	52
40	Economics and market prospects of portable fuel cellsâ~†. International Journal of Hydrogen Energy, 2007, 32, 4319-4328.	7.1	93
41	Prospects of fuel cell auxiliary power units in the civil marketsâ~†. International Journal of Hydrogen Energy, 2007, 32, 4306-4318.	7.1	47
42	Use of economic instruments in the German renewable electricity policy. Energy Policy, 2006, 34, 3538-3548.	8.8	45