
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4853142/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cancer Cell Membraneâ€Coated Upconversion Nanoprobes for Highly Specific Tumor Imaging. Advanced Materials, 2016, 28, 3460-3466.	21.0	420
2	Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance. Small, 2015, 11, 6225-6236.	10.0	353
3	Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging. ACS Applied Materials & amp; Interfaces, 2017, 9, 2159-2168.	8.0	195
4	Antitumor Plateletâ€Mimicking Magnetic Nanoparticles. Advanced Functional Materials, 2017, 27, 1604774.	14.9	152
5	Myeloidâ€Đerived Suppressor Cell Membraneâ€Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death. Advanced Functional Materials, 2018, 28, 1801389.	14.9	140
6	Cancer Stem Cellâ€Platelet Hybrid Membraneâ€Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Advanced Functional Materials, 2019, 29, 1807733.	14.9	137
7	CD163+ Tumor-Associated Macrophages Correlated with Poor Prognosis and Cancer Stem Cells in Oral Squamous Cell Carcinoma. BioMed Research International, 2014, 2014, 1-9.	1.9	134
8	Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma. Cancer Immunology, Immunotherapy, 2017, 66, 627-636.	4.2	133
9	Plateletâ€Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Angewandte Chemie - International Edition, 2018, 57, 986-991.	13.8	132
10	Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Molecular Cancer, 2017, 16, 99.	19.2	129
11	Blockade of TIGIT/CD155 Signaling Reverses T-cell Exhaustion and Enhances Antitumor Capability in Head and Neck Squamous Cell Carcinoma. Cancer Immunology Research, 2019, 7, 1700-1713.	3.4	126
12	LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma. Oncolmmunology, 2016, 5, e1239005.	4.6	108
13	Blockage of the NLRP3 inflammasome by MCC950 improves anti-tumor immune responses in head and neck squamous cell carcinoma. Cellular and Molecular Life Sciences, 2018, 75, 2045-2058.	5.4	103
14	PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma. Oncotarget, 2015, 6, 42067-42080.	1.8	95
15	Targeting CMTM6 Suppresses Stem Cell–Like Properties and Enhances Antitumor Immunity in Head and Neck Squamous Cell Carcinoma. Cancer Immunology Research, 2020, 8, 179-191.	3.4	91
16	NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2017, 36, 116.	8.6	89
17	Blockade of TIM3 relieves immunosuppression through reducing regulatory T cells in head and neck cancer. Journal of Experimental and Clinical Cancer Research, 2018, 37, 44.	8.6	87
18	Long noncoding RNA MYOSLID promotes invasion and metastasis by modulating the partial epithelial-mesenchymal transition program in head and neck squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 278.	8.6	80

#	Article	IF	CITATIONS
19	NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Scientific Reports, 2016, 6, 24704.	3.3	76
20	Tâ€cell immunoglobulin mucin 3 blockade drives an antitumor immune response in head and neck cancer. Molecular Oncology, 2017, 11, 235-247.	4.6	65
21	CTLA4 blockade reduces immature myeloid cells in head and neck squamous cell carcinoma. Oncolmmunology, 2016, 5, e1151594.	4.6	59
22	γ‣ecretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. International Journal of Cancer, 2018, 142, 999-1009.	5.1	59
23	Inhibition of JAK2/STAT3 reduces tumorâ€induced angiogenesis and myeloidâ€derived suppressor cells in head and neck cancer. Molecular Carcinogenesis, 2018, 57, 429-439.	2.7	59
24	B7-H4 expression indicates poor prognosis of oral squamous cell carcinoma. Cancer Immunology, Immunotherapy, 2016, 65, 1035-1045.	4.2	58
25	Anterior gradient protein 2 expression in high grade head and neck squamous cell carcinoma correlated with cancer stem cell and epithelial mesenchymal transition. Oncotarget, 2015, 6, 8807-8821.	1.8	54
26	Clinical Significance of Keap1 and Nrf2 in Oral Squamous Cell Carcinoma. PLoS ONE, 2013, 8, e83479.	2.5	48
27	Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma. OncoImmunology, 2018, 7, e1397248.	4.6	45
28	<scp>TRAF</scp> 6 regulates tumour metastasis through <scp>EMT</scp> and <scp>CSC</scp> phenotypes in head and neck squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2018, 22, 1337-1349.	3.6	44
29	Dihydromyricetin promotes autophagy and apoptosis through ROS-STAT3 signaling in head and neck squamous cell carcinoma. Oncotarget, 2016, 7, 59691-59703.	1.8	44
30	Selective blockade of B7â€H3 enhances antitumour immune activity by reducing immature myeloid cells in head and neck squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2017, 21, 2199-2210.	3.6	43
31	Epidermal Growth Factor Receptor Inhibition Reduces Angiogenesis via Hypoxia-Inducible Factor-1α and Notch1 in Head Neck Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0119723.	2.5	41
32	Inhibition of SRC family kinases facilitates anti-CTLA4 immunotherapy in head and neck squamous cell carcinoma. Cellular and Molecular Life Sciences, 2018, 75, 4223-4234.	5.4	37
33	STAT3 blockade enhances the efficacy of conventional chemotherapeutic agents by eradicating head neck stemloid cancer cell. Oncotarget, 2015, 6, 41944-41958.	1.8	36
34	Targeting STAT3 signaling reduces immunosuppressive myeloid cells in head and neck squamous cell carcinoma. Oncolmmunology, 2016, 5, e1130206.	4.6	32
35	Specific blockade <scp>CD</scp> 73 alters the "exhausted―phenotype of <scp>T</scp> cells in head and neck squamous cell carcinoma. International Journal of Cancer, 2018, 143, 1494-1504.	5.1	31
36	Long Non-coding RNA LINC02195 as a Regulator of MHC I Molecules and Favorable Prognostic Marker for Head and Neck Squamous Cell Carcinoma. Frontiers in Oncology, 2020, 10, 615.	2.8	31

#	Article	IF	CITATIONS
37	Inhibition of SRC family kinases reduces myeloidâ€derived suppressor cells in head and neck cancer. International Journal of Cancer, 2017, 140, 1173-1185.	5.1	30
38	Tumor growth suppression by inhibiting both autophagy and STAT3 signaling in HNSCC. Oncotarget, 2015, 6, 43581-43593.	1.8	28
39	Increased salivary microvesicles are associated with the prognosis of patients with oral squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2019, 23, 4054-4062.	3.6	23
40	MiR-34a suppresses amphiregulin and tumor metastatic potential of head and neck squamous cell carcinoma (HNSCC). Oncotarget, 2015, 6, 7454-7469.	1.8	22
41	LAIRâ€I overexpression and correlation with advanced pathological grade and immune suppressive status in oral squamous cell carcinoma. Head and Neck, 2019, 41, 1080-1086.	2.0	21
42	Over-expression of IQGAP1 indicates poor prognosis in head and neck squamous cell carcinoma. Journal of Molecular Histology, 2018, 49, 389-398.	2.2	19
43	Plateletâ€Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Angewandte Chemie, 2018, 130, 998-1003.	2.0	18
44	Inhibition of Survivin Reduces HIF-1α, TGF-β1 and TFE3 in Salivary Adenoid Cystic Carcinoma. PLoS ONE, 2014, 9, e114051.	2.5	17
45	The Expression Patterns and Associated Clinical Parameters of Human Endogenous Retrovirus-H Long Terminal Repeat-Associating Protein 2 and Transmembrane and Immunoglobulin Domain Containing 2 in Oral Squamous Cell Carcinoma. Disease Markers, 2019, 2019, 1-9.	1.3	17
46	Expression of LC3, LAMP2, KEAP1 and NRF2 in Salivary Adenoid Cystic Carcinoma. Pathology and Oncology Research, 2016, 22, 109-114.	1.9	16
47	CD44 + cancer cell-induced metastasis: A feasible neck metastasis model. European Journal of Pharmaceutical Sciences, 2017, 101, 243-250.	4.0	15
48	Expression and phosphorylation of Stathmin 1 indicate poor survival in head and neck squamous cell carcinoma and associate with immune suppression. Biomarkers in Medicine, 2018, 12, 759-769.	1.4	14
49	Hypoxia induces TFE3 expression in head and neck squamous cell carcinoma. Oncotarget, 2016, 7, 11651-11663.	1.8	14
50	Targeting phosphorylation of STAT3 delays tumor growth in HPV-negative anal squamous cell carcinoma mouse model. Scientific Reports, 2017, 7, 6629.	3.3	13
51	Role of hypoxia-inducible factor-1α and CD146 in epidermal growth factor receptor-mediated angiogenesis in salivary gland adenoid cystic carcinoma. Molecular Medicine Reports, 2015, 12, 3432-3438.	2.4	12
52	Inhibition of mTOR reduce Stat3 and PAI related angiogenesis in salivary gland adenoid cystic carcinoma. American Journal of Cancer Research, 2014, 4, 764-75.	1.4	12
53	Overexpression of FAM3C is associated with poor prognosis in oral squamous cell carcinoma. Pathology Research and Practice, 2019, 215, 772-778.	2.3	11
54	Overexpression of Golgi Phosphoprotein 2 Is Associated With Poor Prognosis in Oral Squamous Cell Carcinoma. American Journal of Clinical Pathology, 2018, 150, 74-83.	0.7	10

#	Article	IF	CITATIONS
55	Notch signaling induces epithelial-mesenchymal transition to promote invasion and metastasis in adenoid cystic carcinoma. American Journal of Translational Research (discontinued), 2015, 7, 162-74.	0.0	10
56	Inhibition of STAT3 reduces proliferation and invasion in salivary gland adenoid cystic carcinoma. American Journal of Cancer Research, 2015, 5, 1751-61.	1.4	9
57	C4.4A as a biomarker of head and neck squamous cell carcinoma and correlated with epithelial mesenchymal transition. American Journal of Cancer Research, 2015, 5, 3505-15.	1.4	9
58	PAK2 promotes migration and proliferation of salivary gland adenoid cystic carcinoma. American Journal of Translational Research (discontinued), 2016, 8, 3387-97.	0.0	8
59	Expression and associations of TRAF1, BMI-1, ALDH1, and Lin28B in oral squamous cell carcinoma. Tumor Biology, 2017, 39, 101042831769593.	1.8	7
60	High expression of GPNMB predicts poor prognosis in head and neck squamous cell carcinoma. Histology and Histopathology, 2019, 34, 803-810.	0.7	7
61	Aberrant Expression and Subcellular Localization of PER2 Promote the Progression of Oral Squamous Cell Carcinoma. BioMed Research International, 2020, 2020, 1-10.	1.9	5
62	Cancer Theranostics: Myeloid-Derived Suppressor Cell Membrane-Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death (Adv. Funct. Mater. 37/2018). Advanced Functional Materials, 2018, 28, 1870265.	14.9	4
63	Overexpression of PREX1 in oral squamous cell carcinoma indicates poor prognosis. Journal of Molecular Histology, 2020, 51, 531-540.	2.2	3
64	Overexpression of p21-activated kinase 2 is correlated with high-grade oral squamous cell carcinomas. Future Oncology, 2018, 14, 1091-1100.	2.4	2
65	Overexpression of Malic Enzyme 2 Indicates Pathological and Clinical Significance in Oral Squamous Cell Carcinoma. International Journal of Medical Sciences, 2020, 17, 799-806.	2.5	2
66	Theranostics: Antitumor Plateletâ€Mimicking Magnetic Nanoparticles (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	14.9	1