Bi-Cai Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4851088/publications.pdf

Version: 2024-02-01

23533 57758 12,754 161 44 111 citations h-index g-index papers 168 168 168 15725 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Enhanced Photoresponsive Ultrathin Graphitic-Phase C ₃ N ₄ Nanosheets for Bioimaging. Journal of the American Chemical Society, 2013, 135, 18-21.	13.7	1,908
2	Oxygen Vacancies Confined in Ultrathin Indium Oxide Porous Sheets for Promoted Visible-Light Water Splitting. Journal of the American Chemical Society, 2014, 136, 6826-6829.	13.7	1,178
3	Ultrathin Spinelâ€Structured Nanosheets Rich in Oxygen Deficiencies for Enhanced Electrocatalytic Water Oxidation. Angewandte Chemie - International Edition, 2015, 54, 7399-7404.	13.8	1,118
4	Structures of medium-sized silicon clusters. Nature, 1998, 392, 582-585.	27.8	622
5	Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chemical Science, 2014, 5, 4615-4620.	7.4	455
6	Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution. Journal of the American Chemical Society, 2016, 138, 5087-5092.	13.7	351
7	Design and Epitaxial Growth of MoSe ₂ –NiSe Vertical Heteronanostructures with Electronic Modulation for Enhanced Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 1838-1846.	6.7	310
8	Intralayered Ostwald Ripening to Ultrathin Nanomesh Catalyst with Robust Oxygenâ€Evolving Performance. Advanced Materials, 2017, 29, 1604765.	21.0	283
9	Giant Electron–Hole Interactions in Confined Layered Structures for Molecular Oxygen Activation. Journal of the American Chemical Society, 2017, 139, 4737-4742.	13.7	243
10	Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nature Communications, 2019, 10, 788.	12.8	222
11	Potholeâ€rich Ultrathin WO ₃ Nanosheets that Trigger N≡N Bond Activation of Nitrogen for Direct Nitrate Photosynthesis. Angewandte Chemie - International Edition, 2019, 58, 731-735.	13.8	202
12	Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe _{2â^'x} nanosheets for high-performance hydrogen evolution. Nanoscale, 2014, 6, 11046-11051.	5.6	200
13	Conductive Tungsten Oxide Nanosheets for Highly Efficient Hydrogen Evolution. Nano Letters, 2017, 17, 7968-7973.	9.1	195
14	Nature of Single Vacancy in Achiral Carbon Nanotubes. Physical Review Letters, 2004, 92, 105504.	7.8	184
15	Structural distortion in graphitic-C ₃ N ₄ realizing an efficient photoreactivity. Nanoscale, 2015, 7, 5152-5156.	5 . 6	178
16	Halfâ€Metallicity in Single‣ayered Manganese Dioxide Nanosheets by Defect Engineering. Angewandte Chemie - International Edition, 2015, 54, 1195-1199.	13.8	177
17	Electrochemical doping of anatase TiO ₂ in organic electrolytes for high-performance supercapacitors and photocatalysts. Journal of Materials Chemistry A, 2014, 2, 229-236.	10.3	172
18	Half-Metallic Ferromagnetism in Synthetic Co ₉ Se ₈ Nanosheets with Atomic Thickness. Journal of the American Chemical Society, 2012, 134, 11908-11911.	13.7	170

#	Article	IF	Citations
19	lonization of medium-sized silicon clusters and the geometries of the cations. Journal of Chemical Physics, 1998, 109, 9401-9409.	3.0	169
20	Atomic‣ayerâ€Confined Doping for Atomic‣evel Insights into Visible‣ight Water Splitting. Angewandte Chemie - International Edition, 2015, 54, 9266-9270.	13.8	158
21	Local Electric Field Facilitates High-Performance Li-lon Batteries. ACS Nano, 2017, 11, 8519-8526.	14.6	155
22	Promoting Photogenerated Holes Utilization in Poreâ€Rich WO ₃ Ultrathin Nanosheets for Efficient Oxygenâ€Evolving Photoanode. Advanced Energy Materials, 2016, 6, 1600437.	19.5	150
23	An environment-dependent tight-binding potential for Si. Journal of Physics Condensed Matter, 1999, 11, 2043-2049.	1.8	139
24	Highly Active Fe Sites in Ultrathin Pyrrhotite Fe ₇ 8Nanosheets Realizing Efficient Electrocatalytic Oxygen Evolution. ACS Central Science, 2017, 3, 1221-1227.	11.3	136
25	Intercalated Iridium Diselenide Electrocatalysts for Efficient pHâ€Universal Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 14764-14769.	13.8	126
26	Highly efficient visible-light-driven photocatalytic activities in synthetic ordered monoclinic BiVO4 quantum tubes–graphene nanocomposites. Nanoscale, 2012, 4, 3761.	5.6	121
27	Electrochemical Doping of Halide Perovskites with Ion Intercalation. ACS Nano, 2017, 11, 1073-1079.	14.6	118
28	Ultrathin Nanosheets of MAX Phases with Enhanced Thermal and Mechanical Properties in Polymeric Compositions: Ti ₃ Si _{0.75} Al _{0.25} C ₂ . Angewandte Chemie - International Edition, 2013, 52, 4361-4365.	13.8	113
29	New-phase VO2 micro/nanostructures: investigation of phase transformation and magnetic property. New Journal of Chemistry, 2012, 36, 619-625.	2.8	108
30	Single atom accelerates ammonia photosynthesis. Science China Chemistry, 2018, 61, 1187-1196.	8.2	107
31	Synthesis of FeP ₂ /C nanohybrids and their performance for hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 499-503.	10.3	91
32	Magnetic ions in wide band gap semiconductor nanocrystals for optimized thermoelectric properties. Materials Horizons, 2014, 1, 81-86.	12.2	87
33	Dissolving, trapping and detrapping mechanisms of hydrogen in bcc and fcc transition metals. AIP Advances, 2013, 3, .	1.3	82
34	Theoretical study on the tungsten-induced reduction of transition temperature and the degradation of optical properties for VO2. Journal of Chemical Physics, 2013, 138, 114705.	3.0	76
35	Bionanofiber Assisted Decoration of Few‣ayered MoSe ₂ Nanosheets on 3D Conductive Networks for Efficient Hydrogen Evolution. Small, 2017, 13, 1602866.	10.0	67
36	Formation energies of topological defects in carbon nanotubes. Physical Review B, 2000, 62, 12652-12655.	3.2	64

#	Article	IF	Citations
37	Oxygen vacancy engineering in spinel-structured nanosheet wrapped hollow polyhedra for electrochemical nitrogen fixation under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 1652-1659.	10.3	59
38	Microscopic nature of Staebler-Wronski defect formation in amorphous silicon. Applied Physics Letters, 1998, 72, 371-373.	3.3	55
39	Wide Range Bandgap Modulation Based on ZnO-based Alloys and Fabrication of Solar Blind UV Detectors with High Rejection Ratio. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14152-14158.	8.0	55
40	Structural Features and Electronic Properties of MgO Nanosheets and Nanobelts. Journal of Physical Chemistry C, 2012, 116, 23130-23135.	3.1	53
41	Lithium–Boron (Li–B) Monolayers: First-Principles Cluster Expansion and Possible Two-Dimensional Superconductivity. ACS Applied Materials & Interfaces, 2016, 8, 2526-2532.	8.0	49
42	Enhanced stability of deuterium in silicon. Applied Physics Letters, 1998, 72, 3500-3502.	3.3	45
43	Theoretical study of size-dependent properties of BN nanotubes with intrinsic defects. Physical Review B, 2007, 76, .	3.2	42
44	The Nature of Radiative Transitions in O-Doped Boron Nitride Nanotubes. Journal of the American Chemical Society, 2009, 131, 4839-4845.	13.7	42
45	On the influence of short and medium range order on the material band gap in hydrogenated amorphous silicon. Journal of Applied Physics, 2004, 96, 3818-3826.	2.5	40
46	Electronic and vibrational properties of diamondlike hydrocarbons. Physical Review B, 2005, 72, .	3.2	40
47	Structures, Stability, Vibration Entropy and IR Spectra of Hydrated Calcium Ion Clusters [Ca(H ₂ 0) _{<i>n</i>)_{]²⁺ (<i>n</i>) = $1\hat{a}^2$20, 27): A Systematic Investigation by Density Functional Theory. Journal of Physical Chemistry A, 2010, 114, 7595-7603.}}	2.5	39
48	Highly Dual-Heteroatom-Doped Ultrathin Carbon Nanosheets with Expanded Interlayer Distance for Efficient Energy Storage. ACS Sustainable Chemistry and Engineering, 2018, 6, 3143-3153.	6.7	38
49	Noncovalent Functionalization of BN Nanotubes with Perylene Derivative Molecules: An <i>ab Initio</i> Study. ACS Nano, 2010, 4, 1313-1320.	14.6	37
50	Facilitating Lithium-Ion Diffusion in Layered Cathode Materials by Introducing Li ⁺ /Ni ²⁺ Antisite Defects for High-Rate Li-Ion Batteries. Research, 2019, 2019, 2198906.	5.7	36
51	Structure and optical properties of ternary alloy BeZnO and quaternary alloy BeMgZnO films growth by molecular beam epitaxy. Applied Surface Science, 2013, 274, 341-344.	6.1	35
52	Nature of the negative thermal expansion in antiperovskite compound Mn3ZnN. Journal of Applied Physics, 2010, 108, .	2.5	33
53	Highly depressed temperature-induced metal-insulator transition in synthetic monodisperse 10-nm V2O3 pseudocubes enclosed by {012} facets. Nanoscale, 2011, 3, 2609.	5.6	32
54	Ultrahigh Energy Density Realized by a Singleâ€Layer βâ€Co(OH) ₂ Allâ€Solidâ€State Asymmetric Supercapacitor. Angewandte Chemie, 2014, 126, 13003-13007.	2.0	32

#	Article	IF	Citations
55	Geometric structures, electronic properties, and vibrational frequencies of small tellurium clusters. Physical Review B, 2002, 65, .	3.2	31
56	Solar-blind wurtzite MgZnO alloy films stabilized by Be doping. Journal Physics D: Applied Physics, 2013, 46, 245103.	2.8	31
57	Formation behavior of Be <i>x</i> Zn1 \hat{a} ° <i>x</i> O alloys grown by plasma-assisted molecular beam epitaxy. Applied Physics Letters, 2013, 102, .	3.3	31
58	Intercalated Iridium Diselenide Electrocatalysts for Efficient pHâ€Universal Water Splitting. Angewandte Chemie, 2019, 131, 14906-14911.	2.0	30
59	Giant reduction of the phase transition temperature for beryllium doped VO2. Physical Chemistry Chemical Physics, 2013, 15, 4687.	2.8	29
60	An energetic evaluation of dissolution corrosion capabilities of liquid metals on iron surface. Physical Chemistry Chemical Physics, 2014, 16, 16837.	2.8	29
61	Interaction of hydrogen with vacancies in a (12,0) carbon nanotube. Physical Review B, 2005, 71, .	3.2	27
62	Hydrogen diffusion behavior in N doped ZnO: First-principles study. Journal of Applied Physics, 2008, 103, .	2.5	26
63	Quantum Tunneling of Magnetization in Ultrasmall Half-Metallic V3O4 Quantum Dots: Displaying Quantum Superparamagnetic State. Scientific Reports, 2012, 2, 755.	3.3	25
64	Enhanced Exciton Binding Energy of ZnO by Long-Distance Perturbation of Doped Be Atoms. Journal of Physical Chemistry Letters, 2016, 7, 1484-1489.	4.6	25
65	The composition-dependent mechanical properties of Ge/Si core–shell nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 3042-3048.	2.7	23
66	Elastic and Melting Properties of Crystalline SiC Nanotubes. Journal of Physical Chemistry C, 2010, 114, 8199-8205.	3.1	23
67	H-stabilized shallow acceptors in N-doped ZnO. Physical Review B, 2015, 92, .	3.2	23
68	Theoretical study of the new compound VO2 (D). Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3474-3477.	2.1	22
69	Mechanism of Proton Conduction in Doped Barium Cerates: A First-Principles Study. Journal of Physical Chemistry C, 2020, 124, 8024-8033.	3.1	22
70	Theoretical studies of neutral and cationic selenium clusters. Physical Review B, 2000, 62, 17026-17030.	3.2	21
71	Potholeâ€rich Ultrathin WO ₃ Nanosheets that Trigger N≡N Bond Activation of Nitrogen for Direct Nitrate Photosynthesis. Angewandte Chemie, 2019, 131, 741-745.	2.0	21
72	Thermal Conductivity, Electrical Resistivity, and Microstructure of Cu/W Multilayered Nanofilms. ACS Applied Materials & Diterfaces, 2020, 12, 8886-8896.	8.0	21

#	Article	IF	CITATIONS
73	Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16279-16288.	8.0	21
74	Tuning electronic structure of graphene via tailoring structure: Theoretical study. Journal of Applied Physics, $2010, 107, .$	2.5	20
75	The dynamical process of the phase transition from VO2(M) to VO2(R). Journal of Applied Physics, 2011, 110, .	2.5	20
76	Effect of irradiation defects on the corrosion behaviors of steels exposed to lead bismuth eutectic in ADS: a first-principles study. Physical Chemistry Chemical Physics, 2015, 17, 12292-12298.	2.8	20
77	Structures of WxNy Crystals and Their Intrinsic Properties: First-Principles Calculations. Crystal Growth and Design, 2018, 18, 2270-2278.	3.0	20
78	Structural features of silicon clusters (). Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 368, 396-401.	2.1	19
79	Effects of nitrogen vacancies on transition-metal-doped GaN: An ab initio study. Journal of Applied Physics, 2009, 105, 103710.	2.5	19
80	A microstructure engineered perovskite super anode with Li-storage life of exceeding 10,000 cycles. Nano Energy, 2022, 94, 106972.	16.0	19
81	Low-lying isomers of Sin+ and Sinâ^' (n=31–50) clusters. Journal of Chemical Physics, 2008, 128, 234302.	3.0	18
82	Strain-induced semiconducting-metallic transition for ZnO zigzag nanoribbons. Journal of Applied Physics, 2010, 107, .	2.5	18
83	Boron-tuning transition temperature of vanadium dioxide from rutile to monoclinic phase. Journal of Chemical Physics, 2014, 141, 194707.	3.0	18
84	Structural features and thermal properties of W/Cu compounds using tight-binding potential calculations. Journal of Materials Science, 2016, 51 , $5948-5961$.	3.7	18
85	Electronic structure regulation of Na2FePO4F cathode toward superior high-rate and high-temperature sodium-ion batteries. Energy Storage Materials, 2022, 45, 851-860.	18.0	18
86	Structure and simulation of hydrogenated nanocrystalline silicon. Journal of Applied Physics, 2004, 96, 6247-6252.	2.5	17
87	Interaction of Iron Atoms with Pristine and Defective (8, 0) Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2008, 112, 13571-13578.	3.1	17
88	Development of a tight-binding model for Cu and its application to a Cu-heat-sink under irradiation. Journal of Materials Science, 2015, 50, 5684-5693.	3.7	17
89	Simulation of hydrogen evolution from nano-crystalline silicon. Journal of Non-Crystalline Solids, 2004, 333, 44-47.	3.1	16
90	Studies on structural defects in carbon nanotubes. Frontiers of Physics in China, 2009, 4, 297-306.	1.0	16

#	Article	IF	CITATIONS
91	High ICE Hard Carbon Anodes for Lithium-Ion Batteries Enabled by a High Work Function. ACS Applied Materials & Samp; Interfaces, 2021, 13, 46813-46820.	8.0	15
92	Tight-binding potential for hydrocarbons. Physical Review B, 2001, 64, .	3.2	14
93	Identifying structural distortion in doped VO2 with IR spectroscopy. Physical Chemistry Chemical Physics, 2012, 14, 7225.	2.8	14
94	Synthetic Potassium Vanadium Oxide K2V6O16·1.5H2O Superlong Nanobelts: A 1D Room-Temperature Ferromagnetic Semiconductor. European Journal of Inorganic Chemistry, 2013, 2013, 3497-3505.	2.0	13
95	The influence of liquid Pb–Bi on the anti-corrosion behavior of Fe ₃ O ₄ : a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 7789-7796.	2.8	13
96	Observation of local electronic structures of adatom vacancies in Si(111) \hat{a} (7 \tilde{A} —7) surface in real space. Physical Review B, 2007, 75, .	3.2	12
97	Effect of cation replacement on the phase stability of formamidinium lead iodide perovskite. Journal of Chemical Physics, 2019, 151, 134104.	3.0	11
98	Possible lowest-reactivity structure of the silicon clusterSi45. Physical Review B, 2006, 73, .	3.2	10
99	Enhancing the topological structures of defected carbon nanotubes with adsorbed hydrocarbon radicals at low temperatures. Physical Review B, 2007, 75, .	3.2	10
100	Theoretical Study of the Site-Dependent Stabilities of Intrinsic Defects in a Polar BN Nanotube with Finite Length. Journal of Physical Chemistry C, 2008, 112, 19353-19359.	3.1	10
101	Electronic Structures and Vibrational Properties of a Carbon Nanotube with Adsorption of Small Hydrocarbon Radicals. Journal of Physical Chemistry C, 2008, 112, 18876-18881.	3.1	10
102	An atomistic insight into the corrosion of the oxide film in liquid lead–bismuth eutectic. Physical Chemistry Chemical Physics, 2014, 16, 7417.	2.8	10
103	Strain-dependent diffusion behavior of H within tungsten. Physica B: Condensed Matter, 2014, 443, 76-79.	2.7	10
104	Active-Site-Specific Structural Engineering Enabled Ultrahigh Rate Performance of the NaLi ₃ Fe ₃ (PO ₄) ₂ (P ₂ O ₇) Cathode for Lithium-Ion Batteries. ACS Applied Materials & Supplied	8.0	10
105	The Structural Features of the Hydrated Ferrous Ion Clusters: [Fe(H2O) n]2+ (nÂ=Â1–19). Journal of Cluster Science, 2012, 23, 311-324.	3.3	9
106	Stabilization of BeZnO alloy by S incorporation: A density functional theory investigation. Journal of Alloys and Compounds, 2016, 658, 636-641.	5.5	9
107	An empirical law for the elastic moduli of component-segregated W/Cu compounds. Journal of Alloys and Compounds, 2018, 766, 349-354.	5.5	9
108	Reactivity and Migration of Hydrogen in A-SI:H. Materials Research Society Symposia Proceedings, 1997, 467, 135.	0.1	8

#	Article	IF	Citations
109	Transferable tight-binding potential for germanium. Journal of Physics Condensed Matter, 2012, 24, 305802.	1.8	8
110	Interaction of H with stacking fault in $W(111)$ film: A possible formation mechanism of H bubbles. RSC Advances, 2014, 4, 7030.	3.6	8
111	A machine learning based deep potential for seeking the low-lying candidates of Al clusters. Journal of Chemical Physics, 2020, 152, 114105.	3.0	8
112	Diffusion of small hydrocarbon radicals on the outer wall of a carbon nanotube. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 542-549.	2.7	7
113	Understanding the origin of phase segregation of nano-crystalline in a BexZn1â^xO random alloy: a novel phase of Be1/3Zn2/3O. Nanoscale, 2015, 7, 9852-9858.	5.6	7
114	Environment-Dependent Tight-Binding Potential Model. Materials Research Society Symposia Proceedings, 1997, 491, 211.	0.1	6
115	Structural phase transition and the related electronic and optical properties of MgZnO nanowires. European Physical Journal B, 2011, 80, 395-400.	1.5	6
116	An empirical law for the band gaps of MgZnO nanowires. Journal of Applied Physics, 2011, 110, 124315.	2.5	6
117	The wurtzite–rocksalt phase transition for a BexMgyZn1â-'xâ-'yO alloy: Be content vs Mg content. Journal of Alloys and Compounds, 2014, 608, 197-201.	5 . 5	6
118	The formation of H bubbles at small-angle tilt grain boundaries in W films. Physical Chemistry Chemical Physics, 2016, 18, 33103-33108.	2.8	6
119	Interaction between gallium atoms and the inner walls of single-walled carbon nanotubes. Nanotechnology, 2008, 19, 075706.	2.6	5
120	"Compressing liquid― An efficient global minima search strategy for clusters. Journal of Chemical Physics, 2009, 131, 034108.	3.0	5
121	Distribution and self-assisted diffusion of Be and Mg impurities in ZnO. Physical Chemistry Chemical Physics, 2016, 18, 19631-19636.	2.8	5
122	An empirical law on the finite-size effects in electronic transport calculations of tungsten. AIP Advances, 2019, 9, .	1.3	5
123	The mechanism on retention of hydrogen in three representative tungsten nitride compounds in nuclear fusion reactors. Journal of Nuclear Materials, 2021, 544, 152687.	2.7	5
124	Non-thermal melting of tungsten under intense electronic excitations. Acta Materialia, 2021, 216, 117158.	7.9	5
125	H Evolution from Nano-Crystalline Silicon- Comparison of Simulation and Experiment. Materials Research Society Symposia Proceedings, 2004, 808, 101.	0.1	4
126	Improved endohedral fullerenelike structures of silicon clusters Si31–Si39 by density functional calculations. European Physical Journal D, 2008, 47, 367-372.	1.3	4

#	Article	IF	CITATIONS
127	The elastic properties of Mn3(Cu1â^'xGex)N compounds. AIP Advances, 2011, 1, 042125.	1.3	4
128	Defects in SiC for Quantum Computing. MRS Advances, 2019, 4, 2217-2222.	0.9	4
129	Linear scaling algorithm for tight-binding molecular dynamics simulations. Journal of Chemical Physics, 2019, 150, 114107.	3.0	4
130	Performance of tungsten nitride compound surfaces to resist sputtering under intense irradiation in nuclear fusion reactors. Applied Surface Science, 2022, 600, 154072.	6.1	4
131	A Tight-Binding Model Beyond Two-Center Approximation. Materials Research Society Symposia Proceedings, 1995, 408, 37.	0.1	3
132	Electronic structures of an extra Si atom diffusing in the Si(111)(7 \tilde{A} –7) surface. Surface Science, 2005, 599, 85-92.	1.9	3
133	Size- and surface-dependent electronic structures of crystalline SiC nanotubes. Journal of Applied Physics, 2011, 109, 084318.	2.5	3
134	The hydrogenation-dependent thermal expansion properties of hydrogenated graphene. European Physical Journal B, 2014, 87, 1.	1.5	3
135	The nucleation and growth of H blisters in dislocation loops in W $\{110\}$. Journal of Nuclear Materials, 2016, 478, 222-226.	2.7	3
136	Theoretical Simulations of Irradiation-Induced Sputtering at Tungsten Surface. Chinese Journal of Chemical Physics, 2017, 30, 77-82.	1.3	3
137	The thermal conductivity of defected copper at finite temperatures. Journal of Materials Science, 2020, 55, 4453-4463.	3.7	3
138	Flatband in a three-dimensional tungsten nitride compound. Journal of Chemical Physics, 2020, 152, 224503.	3.0	3
139	Atomistic Character of Nanocrystalline and Mixed Phase Silicon. Materials Research Society Symposia Proceedings, 2003, 762, 1141.	0.1	3
140	Microcrystalline and Nanocrystalline Silicon: Simulation of Material Properties. Materials Research Society Symposia Proceedings, 2005, 862, 2431.	0.1	2
141	Crystallized silicon nanostructures â€" experimental characterization and atomistic simulations. Canadian Journal of Physics, 2014, 92, 783-788.	1.1	2
142	Interplay of the doped Ge atoms and the N vacancies with the negative thermal expansion of M3(Cu1â^'x) Tj ETQc	դ0 <u>.0</u> 0 rgB ⁻	T <u>/</u> Overlock 1
143	A first-principles study on the negative thermal expansion material: Mn3(A0.5B0.5)N (A=Cu, Zn, Ag, or) Tj ETQq1	1 0,78431 1.3	4 ₂ rgBT /Over
144	Atomic resolution on the (111)B surface of mercury cadmium telluride by scanning tunneling microscopy. Physical Review B, 2018, 97, .	3.2	2

#	Article	IF	Citations
145	First-principles study of intrinsic point defects in MgSiAs2. Physical Chemistry Chemical Physics, 2019, 21, 5295-5304.	2.8	2
146	Mechanical properties and phase transition of tungsten with edge dislocation under intensively-electronic excitation. Journal of Nuclear Materials, 2022, 561, 153540.	2.7	2
147	Simulation of Realistic Core-shell Silicon Nanowires. Materials Research Society Symposia Proceedings, 2006, 910, 4.	0.1	1
148	Identification of Silicon Clusters by Electron Diffraction Spectra. Journal of Physical Chemistry C, 2007, 111, 5850-5854.	3.1	1
149	Stability of Ga6N6 clusters in a nitrogen environment. European Physical Journal D, 2007, 41, 121-125.	1.3	1
150	Diffusion of an Extra Ga Atom in GaAs(001)(2 4) Rich-As Surface. Chinese Journal of Chemical Physics, 2008, 21, 69-75.	1.3	1
151	Theoretical Study of H Diffusion Behavior and the Vibrational Properties of Liâ^'H Complexes in ZnO. Journal of Physical Chemistry C, 2009, 113, 11381-11384.	3.1	1
152	New compounds Mg3IV6V8 (IV=Si, Ge, Sn; V=P, As, Sb) and their potential application to photovoltaic materials. Journal of Alloys and Compounds, 2019, 786, 434-439.	5.5	1
153	Dilute magnetism in Co-doped spinel Mg3Si6As8. Journal of Applied Physics, 2020, 128, .	2.5	1
154	Theoretical study on the interaction of p-type impurities with hydrogen in ZnO. Scientia Sinica: Physica, Mechanica Et Astronomica, 2012, 42, 1124-1134.	0.4	1
155	Nonthermal effects in H-doped tungsten at high electronic temperatures. Journal of Nuclear Materials, 2022, 568, 153896.	2.7	1
156	INVESTIGATION OF A POSSIBLE GROWTH MECHANISM OF SYNTHETIC DIAMOND FILMS. Modern Physics Letters B, 1992, 06, 599-604.	1.9	0
157	STUDY OF ELECTRONIC STATES IN THE HYDROGEN-INDUCED STRUCTURAL PHASE TRANSITION FROM DIAMOND C(111)–(2*1) RECONSTRUCTION TO (1*1) STRUCTURE. Modern Physics Letters B, 1992, 06, 649-6	55 ^{1.9}	0
158	Nature of Charged Metastable Defects in Network Rebonding Model. Materials Research Society Symposia Proceedings, 2002, 715, 1131.	0.1	0
159	Lattice strain effects in graphane and partially-hydrogenated graphene sheets. Materials Research Society Symposia Proceedings, 2009, 1216, 1.	0.1	0
160	The effect of hydrogen and oxygen atoms on the adsorbed gallium inside defective carbon nanotubes. European Physical Journal B, 2010, 73, 413-416.	1.5	0
161	Carbon Nanofibers: Bionanofiber Assisted Decoration of Few‣ayered MoSe ₂ Nanosheets on 3D Conductive Networks for Efficient Hydrogen Evolution (Small 7/2017). Small, 2017, 13, .	10.0	0