
Joseph T Y Lau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4850852/publications.pdf Version: 2024-02-01

ΙΟΣΕΡΗ ΤΥΙΛΙΙ

#	Article	IF	CITATIONS
1	Bacterial colonization and TH17 immunity are shaped by intestinal sialylation in neonatal mice. Glycobiology, 2022, 32, 414-428.	2.5	4
2	Extracellular ST6GAL1 regulates monocyte–macrophage development and survival. Glycobiology, 2022, 32, 701-711.	2.5	5
3	Extracellular sialyltransferase st6gal1 in breast tumor cell growth and invasiveness. Cancer Gene Therapy, 2022, 29, 1662-1675.	4.6	21
4	Pregnancy enables antibody protection against intracellular infection. Nature, 2022, 606, 769-775.	27.8	22
5	The sialyltransferase ST6GAL1 protects against radiation-induced gastrointestinal damage. Glycobiology, 2020, 30, 446-453.	2.5	13
6	Blood-Borne ST6GAL1 Regulates Immunoglobulin Production in B Cells. Frontiers in Immunology, 2020, 11, 617.	4.8	25
7	Recombinant Sialyltransferase Infusion Mitigates Infection-Driven Acute Lung Inflammation. Frontiers in Immunology, 2019, 10, 48.	4.8	18
8	B cells suppress medullary granulopoiesis by an extracellular glycosylation-dependent mechanism. ELife, 2019, 8, .	6.0	21
9	Systemic ST6Cal-1 Is a Pro-survival Factor for Murine Transitional B Cells. Frontiers in Immunology, 2018, 9, 2150.	4.8	24
10	Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death and Disease, 2017, 8, e2805-e2805.	6.3	107
11	The blood-borne sialyltransferase ST6Gal-1 is a negative systemic regulator of granulopoiesis. Journal of Leukocyte Biology, 2017, 102, 507-516.	3.3	29
12	Extrinsic sialylation is dynamically regulated by systemic triggers in vivo. Journal of Biological Chemistry, 2017, 292, 13514-13520.	3.4	49
13	Circulating blood and platelets supply glycosyltransferases that enable extrinsic extracellular glycosylation. Glycobiology, 2017, 27, 188-198.	2.5	52
14	Leukocyte-borne α(1,3)-fucose is a negative regulator of β2-integrin-dependent recruitment in lung inflammation. Journal of Leukocyte Biology, 2017, 101, 459-470.	3.3	12
15	ST3Gal-4 is the primary sialyltransferase regulating the synthesis of E-, P-, and L-selectin ligands on human myeloid leukocytes. Blood, 2015, 125, 687-696.	1.4	70
16	Remodeling of Marrow Hematopoietic Stem and Progenitor Cells by Non-self ST6Gal-1 Sialyltransferase. Journal of Biological Chemistry, 2014, 289, 7178-7189.	3.4	49
17	Platelets Support Extracellular Sialylation by Supplying the Sugar Donor Substrate. Journal of Biological Chemistry, 2014, 289, 8742-8748.	3.4	63
18	Dendritic Cells: A Spot on Sialic Acid. Frontiers in Immunology, 2013, 4, 491.	4.8	76

JOSEPH T Y LAU

#	Article	IF	CITATIONS
19	Silencing α1,3-Fucosyltransferases in Human Leukocytes Reveals a Role for FUT9 Enzyme during E-selectin-mediated Cell Adhesion. Journal of Biological Chemistry, 2013, 288, 1620-1633.	3.4	72
20	Circulatory Glycan-Modifying Enzymes As Systemic Regulators In Blood Cell Development. Blood, 2013, 122, 3686-3686.	1.4	0
21	Anti-inflammatory IgG Production Requires Functional P1 Promoter in β-Galactoside α2,6-Sialyltransferase 1 (ST6Gal-1) Gene. Journal of Biological Chemistry, 2012, 287, 15365-15370.	3.4	57
22	Fluorinated per-acetylated GalNAc metabolically alters glycan structures on leukocyte PSGL-1 and reduces cell binding to selectins. Blood, 2010, 115, 1303-1312.	1.4	59
23	Role for Hepatic and Circulatory ST6Gal-1 Sialyltransferase in Regulating Myelopoiesis. Journal of Biological Chemistry, 2010, 285, 25009-25017.	3.4	40
24	The existence of multipotent stem cells with epithelial–mesenchymal transition features in the human liver bud. International Journal of Biochemistry and Cell Biology, 2010, 42, 2047-2055.	2.8	19
25	Clonal mesenchymal stem cells derived from human bone marrow can differentiate into hepatocyteâ€like cells in injured livers of SCID mice. Journal of Cellular Biochemistry, 2009, 108, 693-704.	2.6	35
26	Altered eosinophil profile in mice with ST6Gal-1 deficiency: an additional role for ST6Gal-1 generated by the P1 promoter in regulating allergic inflammation. Journal of Leukocyte Biology, 2009, 87, 457-466.	3.3	42
27	Isolation and Characterization of Bipotent Liver Progenitor Cells from Adult Mouse. Stem Cells, 2006, 24, 322-332.	3.2	69
28	Biologic contribution of P1 promoter-mediated expression of ST6Gal I sialyltransferase. Glycobiology, 2003, 13, 591-600.	2.5	52
29	Mouse ST6Gal sialyltransferase gene expression during mammary gland lactation. Glycobiology, 2001, 11, 407-412.	2.5	31
30	Transcription of the Â-galactoside Â2,6-sialyltransferase gene (SIAT1) in B-lymphocytes: cell type-specific expression correlates with presence of the divergent 5'-untranslated sequence. Glycobiology, 1999, 9, 907-914.	2.5	25
31	Differential expression of the hepatic transcript of ?-galactoside ?2,6-sialyltransferase in human colon cancer cell lines. , 1999, 81, 243-247.		36
32	Murine hepatic beta-galactoside alpha 2,6-sialyltransferase gene expression involves usage of a novel upstream exon region. Glycoconjugate Journal, 1997, 14, 407-411.	2.7	24
33	The gene encoding β-galactoside α2,6-sialyltransferase maps to mouse Chromosome 16. Mammalian Genome, 1997, 8, 619-620.	2.2	11
34	Novel Heterogeneity Exists in the 5′-Untranslated Region of the β-Galactoside α2,6-Sialyltransferase mRNAs in the Human B-Lymphoblastoid Cell Line, Louckes. Biochemical and Biophysical Research Communications, 1996, 228, 380-385.	2.1	20
35	Differentiation-dependent expression of human?-galactoside?2,6-sialyltransferase mRNA in colon carcinoma CaCo-2 cells. Glycoconjugate Journal, 1996, 13, 115-121.	2.7	38
36	Developmental Regulation of β-Galactoside α2,6-Sialyltransferase in Small Intestine Epithelium. Developmental Biology, 1994, 165, 126-136.	2.0	50