
Francesco Grassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4850703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glucoraphanin Increases Intracellular Hydrogen Sulfide (H2S) Levels and Stimulates Osteogenic Differentiation in Human Mesenchymal Stromal Cell. Nutrients, 2022, 14, 435.	4.1	5
2	Optimization of a Monobromobimane (MBB) Derivatization and RP-HPLC-FLD Detection Method for Sulfur Species Measurement in Human Serum after Sulfur Inhalation Treatment. Antioxidants, 2022, 11, 939.	5.1	10
3	Learning from Monocyte-Macrophage Fusion and Multinucleation: Potential Therapeutic Targets for Osteoporosis and Rheumatoid Arthritis. International Journal of Molecular Sciences, 2020, 21, 6001.	4.1	24
4	Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility. Journal of Diabetes Research, 2020, 2020, 1-18.	2.3	55
5	Sulfurous thermal waters stimulate the osteogenic differentiation of human mesenchymal stromal cells – An in vitro study. Biomedicine and Pharmacotherapy, 2020, 129, 110344.	5.6	7
6	Hydrogen Sulfide in Bone Tissue Regeneration and Repair: State of the Art and New Perspectives. International Journal of Molecular Sciences, 2019, 20, 5231.	4.1	27
7	Hydrogen sulfide-releasing silk fibroin scaffold for bone tissue engineering. Materials Science and Engineering C, 2019, 102, 471-482.	7.3	46
8	Silk Fibroin Porous Scaffolds Loaded with a Slow-Releasing Hydrogen Sulfide Agent (GYY4137) for Applications of Tissue Engineering. ACS Biomaterials Science and Engineering, 2018, 4, 2956-2966.	5.2	25
9	Distinctive expression pattern of cystathionineâ€Î²â€synthase and cystathionineâ€Î³â€lyase identifies mesenchymal stromal cells transition to mineralizing osteoblasts. Journal of Cellular Physiology, 2017, 232, 3574-3585.	4.1	19
10	A Novel H2S-releasing Amino-Bisphosphonate which combines bone anti-catabolic and anabolic functions. Scientific Reports, 2017, 7, 11940.	3.3	33
11	The expression of cystathionine gamma-lyase is regulated by estrogen receptor alpha in human osteoblasts. Oncotarget, 2017, 8, 101686-101696.	1.8	18
12	T cell subsets differently regulate osteogenic differentiation of human mesenchymal stromal cells <i>in vitro</i> . Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 305-314.	2.7	26
13	Hydrogen Sulfide Is a Novel Regulator of Bone Formation Implicated in the Bone Loss Induced by Estrogen Deficiency. Journal of Bone and Mineral Research, 2016, 31, 949-963.	2.8	91
14	Lack of anti-inflammatory and anti-catabolic effects on basal inflamed osteoarthritic chondrocytes or synoviocytes by adipose stem cell-conditioned medium. Osteoarthritis and Cartilage, 2015, 23, 2045-2057.	1.3	19
15	Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via NRF2-dependent mechanism. Pharmacological Research, 2014, 87, 99-112.	7.1	68
16	Extracellular calcium chronically induced human osteoblasts effects: Specific modulation of osteocalcin and collagen type XV. Journal of Cellular Physiology, 2012, 227, 3151-3161.	4.1	27
17	T cell suppression by osteoclasts in vitro. Journal of Cellular Physiology, 2011, 226, 982-990.	4.1	43
18	Evidence of specific characteristics and osteogenic potentiality in bone cells from tibia. Journal of Cellular Physiology, 2011, 226, 2675-2682.	4.1	15

FRANCESCO GRASSI

#	Article	IF	CITATIONS
19	160 CHARACTERIZATION OF BONE CELLS FROM HEALTHY AND OSTEOARTHRITIS PATIENTS. Osteoarthritis and Cartilage, 2010, 18, S79.	1.3	0
20	Mineralization behavior with mesenchymal stromal cells in a biomimetic hyaluronic acid-based scaffold. Biomaterials, 2010, 31, 3986-3996.	11.4	50
21	Inhibition of antigen presentation and T cell costimulation blocks PTHâ€induced bone loss. Annals of the New York Academy of Sciences, 2010, 1192, 215-221.	3.8	34
22	Gene array profile identifies collagen type XV as a novel human osteoblastâ€secreted matrix protein. Journal of Cellular Physiology, 2009, 220, 401-409.	4.1	30
23	CCL20/CCR6 chemokine/receptor expression in bone tissue from osteoarthritis and rheumatoid arthritis patients: Different response of osteoblasts in the two groups. Journal of Cellular Physiology, 2009, 221, 154-160.	4.1	23
24	The role of nitric oxide in the mechanical repression of RANKL in bone stromal cells. Bone, 2008, 43, 48-54.	2.9	35
25	T Cells Potentiate PTH-Induced Cortical Bone Loss through CD40L Signaling. Cell Metabolism, 2008, 8, 132-145.	16.2	128
26	Expression of CXC Chemokines and Their Receptors Is Modulated during Chondrogenic Differentiation of Human Mesenchymal Stem Cells Grown in Three-Dimensional Scaffold: Evidence in Native Cartilage. Tissue Engineering - Part A, 2008, 14, 97-105.	3.1	28
27	Expression of CXC Chemokines and Their Receptors Is Modulated during Chondrogenic Differentiation of Human Mesenchymal Stem Cells Grown in Three-Dimensional Scaffold: Evidence in Native Cartilage. Tissue Engineering, 2008, 14, 97-105.	4.6	0
28	Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15087-15092.	7.1	135
29	CCL20 chemokine induces both osteoblast proliferation and osteoclast differentiation: Increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. Journal of Cellular Physiology, 2007, 210, 798-806.	4.1	63
30	IFN-γ stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. Journal of Clinical Investigation, 2007, 117, 122-132.	8.2	385
31	CXCL12 (SDF-1) and CXCL13 (BCA-1) chemokines significantly induce proliferation and collagen type I expression in osteoblasts from osteoarthritis patients. Journal of Cellular Physiology, 2006, 206, 78-85.	4.1	79
32	Bone Re/Modeling Is More Dynamic in the Endothelial Nitric Oxide Synthase(â^'/â^') Mouse. Endocrinology, 2006, 147, 4392-4399.	2.8	32
33	Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials, 2005, 26, 5677-5686.	11.4	117
34	Analysis of mesenchymal stem cells grown on a three-dimensional HYAFF 11®-based prototype ligament scaffold. Journal of Biomedical Materials Research - Part A, 2005, 73A, 275-283.	4.0	99
35	An IL-7-dependent rebound in thymic T cell output contributes to the bone loss induced by estrogen deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16735-16740.	7.1	119
36	IL1β and TNFα differently modulate CXCL13 chemokine in stromal cells and osteoblasts isolated from osteoarthritis patients: evidence of changes associated to cell maturation. Experimental Gerontology, 2004, 39, 659-665.	2.8	41

FRANCESCO GRASSI

#	Article	IF	CITATIONS
37	Inhibition of CD95 apoptotic signaling by interferon-? in human osteoarthritic chondrocytes is associated with increased expression of FLICE inhibitory protein. Arthritis and Rheumatism, 2004, 50, 498-506.	6.7	14
38	Recruitment and proliferation of T lymphocytes is supported by IFN?- and TNF?-activated human osteoblasts: Involvement of CD54 (ICAM-1) and CD106 (VCAM-1) adhesion molecules and CXCR3 chemokine receptor. Journal of Cellular Physiology, 2004, 198, 388-398.	4.1	25
39	CXCL12 chemokine up-regulates bone resorption and MMP-9 release by human osteoclasts: CXCL12 levels are increased in synovial and bone tissue of rheumatoid arthritis patients. Journal of Cellular Physiology, 2004, 199, 244-251.	4.1	119
40	Age-associated changes in functional response to CXCR3 and CXCR5 chemokine receptors in human osteoblasts. Biogerontology, 2003, 4, 309-317.	3.9	12
41	IL1-? and TNF-? induce changes in the nuclear polyphosphoinositide signalling system in osteoblasts similar to that occurring in patients with rheumatoid arthritis: an immunochemical and immunocytochemical study. Histochemistry and Cell Biology, 2003, 120, 243-250.	1.7	23
42	Human osteoclasts express different CXC chemokines depending on cell culture substrate: molecular and immunocytochemical evidence of high levels of CXCL10 and CXCL12. Histochemistry and Cell Biology, 2003, 120, 391-400.	1.7	72
43	Human osteoblasts express functional CXC chemokine receptors 3 and 5: Activation by their ligands, CXCL10 and CXCL13, significantly induces alkaline phosphatase and ?-N-acetylhexosaminidase release. Journal of Cellular Physiology, 2003, 194, 71-79.	4.1	54
44	DIFFERENT CHEMOKINES ARE EXPRESSED IN HUMAN ARTHRITIC BONE BIOPSIES: IFN-Î ³ AND IL-6 DIFFERENTLY MODULATE IL-8, MCP-1 AND RANTES PRODUCTION BY ARTHRITIC OSTEOBLASTS. Cytokine, 2002, 20, 231-238.	3.2	73
45	An Elevated Number of Differentiated Osteoblast Colonies Can Be Obtained from Rat Bone Marrow Stromal Cells Using a Gradient Isolation Procedure. Connective Tissue Research, 2001, 42, 49-58.	2.3	14
46	Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: Evidence for CD44 and CD54 (intercellular adhesion molecule 1) involvement. Arthritis and Rheumatism, 2001, 44, 1800-1807.	6.7	111
47	Hyaluronan does not affect cytokine and chemokine expression in osteoarthritic chondrocytes and synoviocytes. Osteoarthritis and Cartilage, 2001, 9, 161-168.	1.3	15
48	Osteoblasts and stromal cells isolated from femora in rheumatoid arthritis (RA) and osteoarthritis (OA) patients express IL-11, leukaemia inhibitory factor and oncostatin M. Clinical and Experimental Immunology, 2000, 119, 346-353.	2.6	52
49	Chemokine expression by subchondral bone marrow stromal cells isolated from osteoarthritis (OA) and rheumatoid arthritis (RA) patients. Clinical and Experimental Immunology, 1999, 116, 371-378.	2.6	50
50	Lessons from homocystinuria: Cystathionine beta-synthase as a novel marker for osteogenic differentiation of human mesenchymal stem cells. Bone Abstracts, 0, , .	0.0	0
51	Hydrogen sulfide is a novel regulator of bone formation involved in the bone loss induced by estrogen deficiency. Bone Abstracts, 0, , .	0.0	0