Miguel Aguilar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/48490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spectrophotometric Quantitation of Antioxidant Capacity through the Formation of a Phosphomolybdenum Complex: Specific Application to the Determination of Vitamin E. Analytical Biochemistry, 1999, 269, 337-341.	2.4	3,789
2	Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability. Frontiers in Plant Science, 2015, 6, 1023.	3.6	52
3	Urea Is a Product of Ureidoglycolate Degradation in Chickpea. Purification and Characterization of the Ureidoglycolate Urea-Lyase. Plant Physiology, 2001, 125, 828-834.	4.8	45
4	Antioxidant Capacity of Extracts from Wild and Crop Plants of the Mediterranean Region. Journal of Food Science, 2007, 72, S059-S063.	3.1	37
5	Direct transfer of molybdopterin cofactor to aponitrate reductase from a carrier protein inChlamydomonas reinhardtii. FEBS Letters, 1992, 307, 162-163.	2.8	35
	Food Science, 2007, 72, S059-S063. Direct transfer of molybdopterin cofactor to aponitrate reductase from a carrier protein		

 $_{6}$ Three genes showing distinct regulatory patterns encode the asparagine synthetase of sunflower () Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

7	Nitrogen stress and the expression of asparagine synthetase in roots and nodules of soybean (<i>Glycine max</i>). Physiologia Plantarum, 2008, 133, 736-743.	5.2	34
8	Uptake and metabolism of allantoin and allantoate by cells ofChlamydomonas reinhardtii(Chlorophyceae). European Journal of Phycology, 1998, 33, 57-64.	2.0	29
9	Allantoate Amidinohydrolase (Allantoicase) from Chlamydomonas reinhardtii: Its Purification and Catalytic and Molecular Characterization. Archives of Biochemistry and Biophysics, 2000, 378, 340-348.	3.0	26
10	Identification and validation of reference genes for RT-qPCR normalization in wheat meiosis. Scientific Reports, 2020, 10, 2726.	3.3	23
11	Molybdate repair of molybdopterin deficient mutants from Chlamydomonas reinhardtii. Current Genetics, 1987, 12, 349-355.	1.7	19
12	RT-PCR cloning, characterization and mRNA expression analysis of a cDNA encoding a type II asparagine synthetase in common bean. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1445, 75-85.	2.4	18
13	Isolation and characterization of uricase from bean leaves and its comparison with uredospore enzymes. Plant Science, 1999, 147, 139-147.	3.6	18
14	Telomeres and Subtelomeres Dynamics in the Context of Early Chromosome Interactions During Meiosis and Their Implications in Plant Breeding. Frontiers in Plant Science, 2021, 12, 672489.	3.6	17
15	On-line HPLC Detection of Tocopherols and Other Antioxidants through the Formation of a Phosphomolybdenum Complex. Journal of Agricultural and Food Chemistry, 2002, 50, 3390-3395.	5.2	15
16	Sequence analysis of wheat subtelomeres reveals a high polymorphism among homoeologous chromosomes. Plant Genome, 2020, 13, e20065.	2.8	15
17	Quantitation of molybdopterin oxidation product in wild-type and molybdenum cofactor deficient mutants of Chalamydomonas reinhardtii. BBA - Proteins and Proteomics, 1992, 1160, 269-274.	2.1	14
18	An Antisense Gene Stimulates Ethylene Hormone Production during Tomato Fruit Ripening. Plant Cell, 1992, 4, 681.	6.6	13

#	ARTICLE	IF	CITATIONS
19	FUNCTIONAL CHARACTERIZATION AND EXPRESSION ANALYSIS OF <i>p</i> HYDROXYPHENYLPYRUVATE DIOXYGENASE FROM THE GREEN ALGA <i>CHLAMYDOMONAS REINHARDTII</i> (CHLOROPHYTA). Journal of Phycology, 2010, 46, 297-308.	2.3	11
20	Purification of a functional asparagine synthetase (PVAS2) from common bean (Phaseolus vulgaris), a protein predominantly found in root tissues. Plant Science, 2005, 168, 89-94.	3.6	10
21	The origin of aliphatic hydrocarbons in olive oil. Journal of the Science of Food and Agriculture, 2017, 97, 4827-4834.	3.5	9
22	Improving Knowledge of Garlic Paste Greening through the Design of an Experimental Strategy. Journal of Agricultural and Food Chemistry, 2007, 55, 10266-10274.	5.2	8
23	PVAS3, a class-II ubiquitous asparagine synthetase from the common bean (Phaseolus vulgaris). Molecular Biology Reports, 2009, 36, 2249-2258.	2.3	7
24	Urate Oxidase from the Rust Puccinia recondita Is a Heterotetramer with Two Different-Sized Monomers. Current Microbiology, 2002, 44, 257-261.	2.2	5
25	<i>γ</i> â€Tocopherol methyltransferase from the green alga <i>Chlamydomonas reinhardtii</i> : functional characterization and expression analysis. Physiologia Plantarum, 2011, 143, 316-328.	5.2	3
26	Homogentisate phytyltransferase from the unicellular green alga Chlamydomonas reinhardtii. Journal of Plant Physiology, 2015, 188, 80-88.	3.5	2
27	Homologous chromosome associations in domains before meiosis could facilitate chromosome recognition and pairing in wheat. Scientific Reports, 2022, 12, .	3.3	2
28	Structural and genomic organization, cDNA characterization and expression analysis of the urate oxidase gene from chickpea (Cicer arietinum)+. Physiologia Plantarum, 2004, 121, 358-368.	5.2	1
29	Purification, quantification and gene expression of urate oxidases in rust-infected bean leaves. Physiological and Molecular Plant Pathology, 2002, 61, 141-150	2.5	0