Frederic Dias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4848588/publications.pdf

Version: 2024-02-01

255 papers 9,850 citations

³⁸⁷²⁰ 50 h-index

92 g-index

276 all docs

276 docs citations

276 times ranked

4416 citing authors

#	Article	IF	CITATIONS
1	Application of a Moving Particle Semi-Implicit Numerical Wave Flume (MPS-NWF) to model design waves. Coastal Engineering, 2022, 172, 104066.	1.7	6
2	Theoretical and applied considerations in depth-integrated currents for third-generation wave models. AIP Advances, 2022, 12, 015017.	0.6	1
3	Wave scattering by a three-dimensional submerged horizontal rectangular plate in a channel: experiments and numerical computations. Journal of Fluid Mechanics, 2022, 935, .	1.4	2
4	Automated Approaches for Capturing Localized Tsunami Responseâ€"Application to the French Coastlines. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	0
5	Current interaction in large-scale wave models with an application to Ireland. Continental Shelf Research, 2022, 245, 104798.	0.9	3
6	Faster Than Real Time Tsunami Warning with Associated Hazard Uncertainties. Frontiers in Earth Science, 2021, 8, .	0.8	18
7	Solitary-wave loads on a three-dimensional submerged horizontal plate: Numerical computations and comparison with experiments. Physics of Fluids, 2021, 33, .	1.6	19
8	Finite-amplitude steady-state resonant waves in a circular basin. Journal of Fluid Mechanics, 2021, 915, .	1.4	5
9	Reactive control of wave energy devices – the modelling paradox. Applied Ocean Research, 2021, 109, 102574.	1.8	29
10	Probabilistic Tsunami Hazard and Risk Analysis: A Review of Research Gaps. Frontiers in Earth Science, 2021, 9, .	0.8	65
11	Storm Waves May Be the Source of Some "Tsunami―Coastal Boulder Deposits. Geophysical Research Letters, 2021, 48, e2020GL090775.	1.5	10
12	A local model for the limiting configuration of interfacial solitary waves. Journal of Fluid Mechanics, 2021, 921, .	1.4	4
13	The Peregrine Breather on the Zero-Background Limit as the Two-Soliton Degenerate Solution: An Experimental Study. Frontiers in Physics, 2021, 9, .	1.0	9
14	An efficient fully Lagrangian solver for modeling wave interaction with oscillating wave surge converter. Ocean Engineering, 2021, 236, 109540.	1.9	18
15	Sensitivity analysis of wind input parametrizations in the WAVEWATCH III spectral wave model using the ST6 source term package for Ireland. Applied Ocean Research, 2021, 115, 102826.	1.8	6
16	Breaking-wave induced pressure and acceleration on a clifftop boulder. Journal of Fluid Mechanics, 2021, 929, .	1.4	2
17	Potential flow over a submerged rectangular obstacle: Consequences for initiation of boulder motion. European Journal of Applied Mathematics, 2020, 31, 646-681.	1.4	4
18	Long Wave Run-Up Resonance in a Multi-Reflection System. Applied Sciences (Switzerland), 2020, 10, 6172.	1.3	0

#	Article	IF	Citations
19	Experimental study on free-surface deformation and forces on a finite submerged plate induced by a solitary wave. Physics of Fluids, 2020, 32, .	1.6	13
20	Influence of Computed Wave Spectra on Statistical Wave Properties. Journal of Marine Science and Engineering, 2020, 8, 1023.	1.2	7
21	Far-Field Maximal Power Absorption of a Bulging Cylindrical Wave Energy Converter. Energies, 2020, 13, 5499.	1.6	5
22	Systematic Review Shows That Work Done by Storm Waves Can Be Misinterpreted as Tsunami-Related Because Commonly Used Hydrodynamic Equations Are Flawed. Frontiers in Marine Science, 2020, 7, .	1.2	32
23	Modelling with Volna-OP2—Towards Tsunami Threat Reduction for the Irish Coastline. Geosciences (Switzerland), 2020, 10, 226.	1.0	2
24	Performance analysis of Volna-OP2 – massively parallel code for tsunami modelling. Computers and Fluids, 2020, 209, 104649.	1.3	6
25	An adaptive discontinuous Galerkin method for the simulation of hurricane storm surge. Ocean Dynamics, 2020, 70, 641-666.	0.9	6
26	Computational model of simultaneous wave and sea current loads on tidal turbines. Ocean Engineering, 2019, 184, 323-331.	1.9	2
27	Large nearshore storm waves off the Irish coast. Scientific Reports, 2019, 9, 15406.	1.6	23
28	Extreme long waves over a varying bathymetry. Journal of Fluid Mechanics, 2019, 878, 481-501.	1.4	14
29	Rogue waves and analogies in optics and oceanography. Nature Reviews Physics, 2019, 1, 675-689.	11.9	215
30	Capytaine: a Python-based linear potential flow solver. Journal of Open Source Software, 2019, 4, 1341.	2.0	21
31	On a unified breaking onset threshold for gravity waves in deep and intermediate depth water. Journal of Fluid Mechanics, 2018, 841, 463-488.	1.4	71
32	Rheological considerations for the modelling of submarine sliding at Rockall Bank, NE Atlantic Ocean. Physics of Fluids, 2018, 30, 030705.	1.6	17
33	How does wave impact generate large boulders? Modelling hydraulic fracture of cliffs and shore platforms. Marine Geology, 2018, 399, 34-46.	0.9	31
34	Slamming: Recent Progress in the Evaluation of Impact Pressures. Annual Review of Fluid Mechanics, 2018, 50, 243-273.	10.8	89
35	Extreme Waves in Crossing Sea States. International Journal of Ocean and Coastal Engineering, 2018, 01, .	0.3	13
36	Incorporating Wave Spectrum Information in Real-time Free-surface Elevation Forecasting: Real-sea Experiments. IFAC-PapersOnLine, 2018, 51, 232-237.	0.5	2

#	Article	IF	Citations
37	Functional emulation of high resolution tsunami modelling over Cascadia. Annals of Applied Statistics, 2018, 12, .	0.5	16
38	The VOLNA-OP2 tsunami code (version 1.5). Geoscientific Model Development, 2018, 11, 4621-4635.	1.3	15
39	Effect of Wave-Current Interaction on Strong Tidal Current. , 2018, , .		O
40	A potential flow model with viscous dissipation based on a modified boundary element method. Engineering Analysis With Boundary Elements, 2018, 97, 1-15.	2.0	20
41	Performance of WAVEWATCH-III and SWAN Models in the North Sea. , 2018, , .		2
42	Catalogue of extreme wave events in Ireland: revised and updated for 14†680 BP to 2017. Natural Hazards and Earth System Sciences, 2018, 18, 729-758.	1.5	28
43	The pressure impulse of wave slamming on an oscillating wave energy converter. Journal of Fluids and Structures, 2018, 82, 258-271.	1.5	17
44	Wall pressure and vorticity in the intermittently turbulent regime of the Stokes boundary layer. Journal of Fluid Mechanics, 2018, 851, 479-506.	1.4	4
45	Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept. Ocean Science, 2018, 14, 337-354.	1.3	87
46	On the steady-state resonant acoustic–gravityÂwaves. Journal of Fluid Mechanics, 2018, 849, 111-135.	1.4	21
47	Using the Floating Body Symmetries to Speed Up the Numerical Computation of Hydrodynamics Coefficients With Nemoh. , 2018, , .		3
48	MULTI-PRONGED INVESTIGATION USES COASTAL BOULDER DEPOSITS TO UNDERSTAND STORM WAVE AMPLIFICATION ALONG STEEP SHORELINES. , $2018, , .$		0
49	Wave Energy Extraction by the End of the Century: Impact of the North Atlantic Oscillation. , 2018, , .		0
50	Comparison of numerical hindcasted severe waves with Doppler radar measurements in the North Sea. Ocean Dynamics, 2017, 67, 103-115.	0.9	11
51	Pressure induced by the interaction of water waves with nearly equal frequencies and nearly opposite directions. Theoretical and Applied Mechanics Letters, 2017, 7, 138-144.	1.3	8
52	Characteristics of wave amplitude and currents in South China Sea induced by a virtual extreme tsunami. Journal of Hydrodynamics, 2017, 29, 377-392.	1.3	21
53	Uncertainties in the 2004 Sumatra–Andaman source through nonlinear stochastic inversion of tsunami waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170353.	1.0	9
54	Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170026.	1.0	31

#	Article	IF	Citations
55	Wave breaking and runup of long waves approaching a cliff over a variable bathymetry. Procedia IUTAM, 2017, 25, 18-27.	1.2	8
56	Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters. Acta Mechanica Sinica/Lixue Xuebao, 2017, 33, 647-662.	1.5	37
57	A new model of viscous dissipation for an oscillating wave surge converter. Journal of Engineering Mathematics, 2017, 103, 195-216.	0.6	14
58	Analysis of the pressure at a vertical barrier due to extreme wave run-up over variable bathymetry. Theoretical and Applied Mechanics Letters, 2017, 7, 269-275.	1.3	9
59	A Cost-Effective Method for Modelling Wave-OWSC Interaction. International Journal of Offshore and Polar Engineering, 2017, 27, 366-373.	0.3	3
60	Real-Time Measurements of Ultrafast Spontaneous Modulation Instability in Optical Fiber., 2017,,.		0
61	Real Time Measurements of Temporal Rogue Waves and Spontaneous Modulation Instability in Optical Fiber. , 2016, , .		O
62	Wave climate projections for Ireland for the end of the 21st century including analysis of <scp>EC</scp> â€Earth winds over the North Atlantic Ocean. International Journal of Climatology, 2016, 36, 4592-4607.	1.5	24
63	Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nature Communications, 2016, 7, 13675.	5.8	175
64	Spatial Bayesian hierarchical modelling of extreme sea states. Ocean Modelling, 2016, 107, 1-13.	1.0	9
65	Real world ocean rogue waves explained without the modulational instability. Scientific Reports, 2016, 6, 27715.	1.6	189
66	Prediction and optimization of wave energy converter arrays using a machine learning approach. Renewable Energy, 2016, 97, 504-517.	4.3	57
67	The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility. Renewable Energy, 2016, 88, 494-516.	4.3	91
68	Wave interaction with an Oscillating Wave Surge Converter. Part II: Slamming. Ocean Engineering, 2016, 113, 319-334.	1.9	73
69	The modular concept of the Oscillating Wave Surge Converter. Renewable Energy, 2016, 85, 484-497.	4.3	27
70	Direct Measurement of Temporal Rogue Waves Generated by Spontaneous Modulation Instability. , 2016, , .		0
71	The Vertical Distribution and Evolution of Slam Pressure on an Oscillating Wave Surge Converter. , 2015, , .		6
72	Numerical Study of Three Dimensional Effects of Wave Impact on an Oscillating Wave Surge Converter. , $2015, , .$		3

#	Article	IF	CITATIONS
73	A Machine Learning Approach to the Analysis of Wave Energy Converters. , 2015, , .		1
74	Hydrodynamic Modelling Competition: Overview and Approaches. , 2015, , .		6
75	The Future Wave Climate of Ireland: From Averages to Extremes. Procedia IUTAM, 2015, 17, 40-46.	1.2	7
76	Numerical Simulation of Wave Impact on a Rigid Wall Using a Two–phase Compressible SPH Method. Procedia IUTAM, 2015, 18, 123-137.	1.2	16
77	Spatial Variability of Extreme Sea States on the Irish West Coast. , 2015, , .		3
78	Emergent rogue wave structures and statistics in spontaneous modulation instability. Scientific Reports, 2015, 5, 10380.	1.6	93
79	Wave interaction with an oscillating wave surge converter, Part I: Viscous effects. Ocean Engineering, 2015, 104, 185-203.	1.9	92
80	The challenging life of wave energy devices at sea: A few points to consider. Renewable and Sustainable Energy Reviews, 2015, 43, 1263-1272.	8.2	80
81	Run-up amplification of transient long waves. Quarterly of Applied Mathematics, 2015, 73, 177-199.	0.5	5
82	Tsunami Generation Above a Sill. Pure and Applied Geophysics, 2015, 172, 985-1002.	0.8	6
83	Flap gate farm: From Venice lagoon defense to resonating wave energy production. Part 2: Synchronous response to incident waves in open sea. Applied Ocean Research, 2015, 52, 43-61.	1.8	17
84	Will oscillating wave surge converters survive tsunamis?. Theoretical and Applied Mechanics Letters, 2015, 5, 160-166.	1.3	9
85	Microfluidics flow and heat transfer in microstructured fibers of circular and elliptical geometry. , 2015, , 3-27.		0
86	Violent flows in aqueous foam II: Simulation platform and results. European Journal of Mechanics, B/Fluids, 2015, 54, 105-124.	1.2	2
87	Effect of a straight coast on the hydrodynamics and performance of the Oscillating Wave Surge Converter. Ocean Engineering, 2015, 105, 25-32.	1.9	46
88	New computational methods in tsunami science. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140382.	1.6	48
89	Caustics and Rogue Waves in an Optical Sea. Scientific Reports, 2015, 5, 12822.	1.6	46
90	Dynamics of Rogue Wave and Soliton Emergence in Spontaneous Modulation Instability., 2015,,.		0

#	Article	lF	CITATIONS
91	Local Analysis of Wave Fields Produced From Hindcasted Rogue Wave Sea States. , 2015, , .		4
92	Performance Enhancement of the Oscillating Wave Surge Converter by a Breakwater. Journal of Ocean and Wind Energy, 2015, 2, .	0.7	4
93	Pressure Fluctuations on a Vertical Wall During Extreme Run-Up Cycles. , 2014, , .		2
94	Numerical Study of Wave Slamming on an Oscillating Flap. , 2014, , .		4
95	Oscillating Wave Surge Converters: Interactions in a Wave Farm. , 2014, , .		1
96	Controlling modulation instability using an incoherent low amplitude seed., 2014,,.		0
97	Extreme waves induced by strong depth transitions: Fully nonlinear results. Physics of Fluids, 2014, 26, .	1.6	53
98	Rogue Wave Structures in Spontaneous Modulation Instability. , 2014, , .		0
99	Wave farm modelling of oscillating wave surge converters. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140118.	1.0	28
100	Hydro-acoustic precursors of gravity waves generated by surface pressure disturbances localised in space and time. Journal of Fluid Mechanics, 2014, 754, 250-262.	1.4	21
101	Ship waves and Kelvin. Journal of Fluid Mechanics, 2014, 746, 1-4.	1.4	40
102	The Conformal-mapping Method for Surface Gravity Waves in the Presence of Variable Bathymetry and Mean Current. Procedia IUTAM, 2014, 11, 110-118.	1.2	20
103	Can small islands protect nearby coasts from tsunamis? An active experimental design approach. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470, 20140575.	1.0	25
104	Motion-resonant modes of large articulated damped oscillators in waves. Journal of Fluids and Structures, 2014, 49, 705-715.	1.5	12
105	Instabilities, breathers and rogue waves in optics. Nature Photonics, 2014, 8, 755-764.	15.6	739
106	A long-term nearshore wave hindcast for Ireland: Atlantic and Irish Sea coasts (1979–2012). Ocean Dynamics, 2014, 64, 1163-1180.	0.9	48
107	Linking Reduced Breaking Crest Speeds to Unsteady Nonlinear Water Wave Group Behavior. Physical Review Letters, 2014, 112, 114502.	2.9	70
108	Wave-power absorption from a finite array of oscillating wave surge converters. Renewable Energy, 2014, 63, 55-68.	4.3	56

#	Article	IF	Citations
109	How does Oyster work? The simple interpretation of Oyster mathematics. European Journal of Mechanics, B/Fluids, 2014, 47, 124-131.	1.2	72
110	Microfluidics in Microstructure Optical Fibers: Heat Flux and Pressure-driven and Other Flows. Procedia IUTAM, 2014, 11, 23-33.	1.2	4
111	On the Modelling of Tsunami Generation and Tsunami Inundation. Procedia IUTAM, 2014, 10, 338-355.	1.2	26
112	Conditions for extreme wave runup on a vertical barrier by nonlinear dispersion. Journal of Fluid Mechanics, 2014, 748, 768-788.	1.4	38
113	Hydrodynamics of the oscillating wave surge converter in the open ocean. European Journal of Mechanics, B/Fluids, 2013, 41, 1-10.	1.2	99
114	Real time spectra and wavelength correlation maps: New insights into octave-spanning supercontinuum generation and rogue waves. , 2013, , .		0
115	An Experimental Study of the Hydrodynamic Effects of Marine Growth on Wave Energy Converters. , 2013, , .		5
116	A Detailed Investigation of the Nearshore Wave Climate and the Nearshore Wave Energy Resource on the West Coast of Ireland. , 2013, , .		8
117	Relations for a periodic array of flap-type wave energy converters. Applied Ocean Research, 2013, 39, 31-39.	1.8	56
118	On the use of the finite fault solution for tsunami generation problems. Theoretical and Computational Fluid Dynamics, 2013, 27, 177-199.	0.9	22
119	Shock propagation in regular wetted arrays of fibers. Shock Waves, 2013, 23, 81-89.	1.0	6
120	Extreme wave runup on a vertical cliff. Geophysical Research Letters, 2013, 40, 3138-3143.	1.5	37
121	Numerical Simulation of Wave Interaction With an Oscillating Wave Surge Converter. , 2013, , .		19
122	Real time noise and wavelength correlations in octave-spanning supercontinuum generation. Optics Express, 2013, 21, 18452.	1.7	87
123	On Hokusai's <i>Great wave off Kanagawa</i> : localization, linearity and a rogue wave in sub-Antarctic waters. Notes and Records of the Royal Society, 2013, 67, 159-164.	0.1	35
124	Dispersive time stretching measurements of real-time spectra and statistics for supercontinuum generation around 1550 nm., 2013, , .		0
125	Emergence of coherent wave groups in deep-water random sea. Physical Review E, 2013, 87, 063001.	0.8	20
126	Incoherent resonant seeding of modulation instability in optical fiber. Optics Letters, 2013, 38, 5338.	1.7	35

#	Article	IF	CITATIONS
127	Mathematical Modelling of a Flap-Type Wave Energy Converter. , 2013, , .		1
128	Wave Power Extraction by an Oscillating Wave Surge Converter in Random Seas. , 2013, , .		10
129	Numerical Simulation of an Oscillating Wave Surge Converter. , 2013, , .		6
130	Extreme wave events in Ireland: 14 680 BP–2012. Natural Hazards and Earth System Sciences, 2013, 13, 625-648.	1.5	50
131	Shock velocity increase due to a heterogeneity produced by a two-gas layer. Physical Review E, 2012, 85, 066307.	0.8	2
132	Observation of Kuznetsov-Ma soliton dynamics in optical fibre. Scientific Reports, 2012, 2, 463.	1.6	345
133	From rogue waves to random walks: Nonlinear instabilities in supercontinuum generation. , 2012, , .		0
134	Real-time full bandwidth measurement of spectral noise in supercontinuum generation. Scientific Reports, 2012, 2, 882.	1.6	137
135	Statistical emulation of a tsunami model for sensitivity analysis and uncertainty quantification. Natural Hazards and Earth System Sciences, 2012, 12, 2003-2018.	1.5	37
136	Resonant behaviour of an oscillating wave energy converter in a channel. Journal of Fluid Mechanics, 2012, 701, 482-510.	1.4	106
137	On weakly nonlinear gravity–capillary solitary waves. Wave Motion, 2012, 49, 221-237.	1.0	2
138	Kuznetsov-Ma Soliton Dynamics in Nonlinear Fiber Optics. , 2012, , .		1
139	Optical rogue waves and localized structures in nonlinear fiber optics. , 2011, , .		0
140	Rediscovered dynamics of nonlinear fiber optics: from breathers to extreme localisation., 2011,,.		0
141	Analytical studies of modulation instability and nonlinear compression dynamics in optical fiber propagation. Proceedings of SPIE, $2011, \dots$	0.8	2
142	Rogue Waves. Lecture Notes Series, Institute for Mathematical Sciences, 2011, , 295-307.	0.2	2
143	Peregrine soliton in optical fiber-based systems. , 2011, , .		1
144	Computing the Maslov index of solitary waves, Part 2: Phase space with dimension greater than four. Physica D: Nonlinear Phenomena, 2011, 240, 1334-1344.	1.3	20

#	Article	IF	Citations
145	Bifurcations of solitons and their stability. Physics Reports, 2011, 507, 43-105.	10.3	90
146	The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation. European Journal of Mechanics, B/Fluids, 2011, 30, 598-615.	1.2	60
147	Stability of some stationary solutions to the forced KdV equation with one or two bumps. Journal of Engineering Mathematics, 2011, 70, 175-189.	0.6	41
148	Potential-flow studies of steady two-dimensional jets, waterfalls, weirs and sprays. Journal of Engineering Mathematics, 2011, 70, 165-174.	0.6	7
149	Local Run-Up Amplification by Resonant Wave Interactions. Physical Review Letters, 2011, 107, 124502.	2.9	31
150	Optical Rogue Waves: Physics and Impact. , 2011, , .		0
151	Impact of a falling jet. Journal of Fluid Mechanics, 2010, 657, 22-35.	1.4	8
152	The dynamics of a developing CW supercontinuum: analytical predictions and experiments. , 2010, , .		0
153	Rogue waves – towards a unifying concept?: Discussions and debates. European Physical Journal: Special Topics, 2010, 185, 5-15.	1.2	100
154	Extreme events in optics: Challenges of the MANUREVA project. European Physical Journal: Special Topics, 2010, 185, 125-133.	1.2	29
155	Influence of sedimentary layering on tsunami generation. Computer Methods in Applied Mechanics and Engineering, 2010, 199, 1268-1275.	3.4	15
156	Collisions and turbulence in optical rogue wave formation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 989-996.	0.9	106
157	On the fully-nonlinear shallow-water generalized Serre equations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 1049-1053.	0.9	58
158	A two-fluid model for violent aerated flows. Computers and Fluids, 2010, 39, 283-293.	1.3	26
159	The Peregrine soliton in nonlinear fibre optics. Nature Physics, 2010, 6, 790-795.	6.5	1,166
160	Modulation instability, Akhmediev breathers, and rogue waves in nonlinear fiber optics. Proceedings of SPIE, $2010, , .$	0.8	1
161	Supercontinuum to solitons: New nonlinear structures in fiber propagation. , 2010, , .		0
162	Modified shock velocity in heterogeneous wetted foams in the strong shock limit. Physics of Plasmas, 2010, 17, .	0.7	10

#	Article	IF	CITATIONS
163	Akhmediev Breather dynamics and the nonlinear modulation instability spectrum. Proceedings of SPIE, 2010, , .	0.8	O
164	Collisions and emergence of optical rogue solitons. , 2010, , .		0
165	PROGRESS IN FULLY NONLINEAR POTENTIAL FLOW MODELING OF 3D EXTREME OCEAN WAVES. Series on Quality, Reliability and Engineering Statistics, 2010, , 75-128.	0.2	22
166	Collisions in optical rogue wave formation. , 2010, , .		0
167	Energy of tsunami waves generated by bottom motion. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 725-744.	1.0	43
168	Experimental characterization of optical rogue waves in the femtosecond regime. , 2009, , .		0
169	Rogue waves and extreme events in nonlinear ultrafast optics. , 2009, , .		O
170	Direct detection of optical rogue wave energy statistics in supercontinuum generation. Electronics Letters, 2009, 45, 217.	0.5	52
171	On the Maslov index of multi-pulse homoclinic orbits. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 2897-2910.	1.0	8
172	Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting. Mathematics and Computers in Simulation, 2009, 80, 837-848.	2.4	29
173	Computing the Maslov index of solitary waves, Part 1: Hamiltonian systems on a four-dimensional phase space. Physica D: Nonlinear Phenomena, 2009, 238, 1841-1867.	1.3	34
174	Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. Optics Express, 2009, 17, 21497.	1.7	456
175	Impact of a rising stream on a horizontal plate of finite extent. Journal of Fluid Mechanics, 2009, 621, 243-258.	1.4	11
176	On satisfying the radiation condition in free-surface flows. Journal of Fluid Mechanics, 2009, 624, 179-189.	1.4	10
177	Rogue Waves in Optics. , 2009, , .		0
178	How Does Sedimentary Layering Affect the Generation of Tsunamis?., 2009,,.		0
179	A Boussinesq system for two-way propagation of interfacial waves. Physica D: Nonlinear Phenomena, 2008, 237, 2365-2389.	1.3	33
180	Theory of weakly damped free-surface flows: A new formulation based on potential flow solutions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 1297-1302.	0.9	114

#	Article	IF	CITATIONS
181	Collapse of solitary waves near the transition from supercritical to subcritical bifurcations. JETP Letters, 2008, 87, 667-671.	0.4	6
182	Simulation of Free Surface Compressible Flows via a Two Fluid Model. , 2008, , .		2
183	Enhancement of the Benjamin-Feir instability with dissipation. Physics of Fluids, 2007, 19, .	1.6	26
184	Water waves generated by a moving bottom. , 2007, , 65-95.		40
185	Influence of rapid changes in a channel bottom on free-surface flows. IMA Journal of Applied Mathematics, 2007, 73, 254-273.	0.8	25
186	Viscous potential free-surface flows in a fluid layer of finite depth. Comptes Rendus Mathematique, 2007, 345, 113-118.	0.1	49
187	Dissipative Boussinesq equations. Comptes Rendus - Mecanique, 2007, 335, 559-583.	2.1	45
188	Deep-water internal solitary waves near critical density ratio. Physica D: Nonlinear Phenomena, 2007, 225, 153-168.	1.3	13
189	Numerical modeling of extreme rogue waves generated by directional energy focusing. Wave Motion, 2007, 44, 395-416.	1.0	125
190	Comparison between three-dimensional linear and nonlinear tsunami generation models. Theoretical and Computational Fluid Dynamics, 2007, 21, 245-269.	0.9	73
191	DYNAMICS OF TSUNAMI WAVES. , 2007, , 201-224.		10
192	A fast method for nonlinear three-dimensional free-surface waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 2715-2735.	1.0	64
193	Bifurcations and stability of internal solitary waves. JETP Letters, 2006, 83, 201-205.	0.4	2
194	Linear theory of wave generation by a moving bottom. Comptes Rendus Mathematique, 2006, 343, 499-504.	0.1	52
195	The numerical computation of freely propagating time-dependent irrotational water waves. Fluid Dynamics Research, 2006, 38, 803-830.	0.6	47
196	Steady Free-surface Flow Past an Uneven Channel Bottom. Theoretical and Computational Fluid Dynamics, 2006, 20, 125-144.	0.9	31
197	Fast computation of the Maslov index for hyperbolic linear systems with periodic coefficients. Journal of Physics A, 2006, 39, 14545-14557.	1.6	14
198	Generalized solitary waves and fronts in coupled Korteweg–de Vries systems. Physica D: Nonlinear Phenomena, 2005, 210, 96-117.	1.3	15

#	Article	IF	CITATIONS
199	Forced solitary waves and fronts past submerged obstacles. Chaos, 2005, 15, 037106.	1.0	52
200	Weakly Nonlinear Wave Packets and the Nonlinear SchrĶdinger Equation. , 2005, , 29-67.		2
201	Two-layer hydraulic falls over an obstacle. European Journal of Mechanics, B/Fluids, 2004, 23, 879-898.	1.2	22
202	One-dimensional wave turbulence. Physics Reports, 2004, 398, 1-65.	10.3	157
203	Trapped waves between submerged obstacles. Journal of Fluid Mechanics, 2004, 509, 93-102.	1.4	64
204	Amplitude des oscillations d'ondes solitaires généralisées. Comptes Rendus Mathematique, 2003, 337, 137-142.	0.1	1
205	On internal fronts. Journal of Fluid Mechanics, 2003, 479, 145-154.	1.4	22
206	Water-Waves as a Spatial Dynamical System. Handbook of Mathematical Fluid Dynamics, 2003, 2, 443-499.	0.1	58
207	Three-Dimensional Numerical Model for Fully Nonlinear Waves Over Arbitrary Bottom., 2002,, 1072.		2
208	Nonlinear effects in the response of a floating ice plate to a moving load. Journal of Fluid Mechanics, 2002, 460, 281-305.	1.4	105
209	Steady two–layer flows over an obstacle. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 2137-2154.	1.6	16
210	Generalised critical free-surface flows. Journal of Engineering Mathematics, 2002, 42, 291-301.	0.6	64
211	Interfacial periodic waves of permanent form with free-surface boundary conditions. Journal of Fluid Mechanics, 2001, 437, 325-336.	1.4	30
212	Steady three-dimensional water-wave patterns on a finite-depth fluid. Journal of Fluid Mechanics, 2001, 436, 145-175.	1.4	23
213	Flow Filling a Curved Pipe. Journal of Fluids Engineering, Transactions of the ASME, 2001, 123, 686-691.	0.8	2
214	Interfacial waves with free-surface boundary conditions: an approach via a model equation. Physica D: Nonlinear Phenomena, 2001, 150, 278-300.	1.3	20
215	Wave turbulence in one-dimensional models. Physica D: Nonlinear Phenomena, 2001, 152-153, 573-619.	1.3	58
216	A fully non-linear model for three-dimensional overturning waves over an arbitrary bottom. International Journal for Numerical Methods in Fluids, 2001, 35, 829-867.	0.9	230

#	Article	IF	Citations
217	Kolmogorov spectra of weak turbulence in media with two types of interacting waves. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 291, 139-145.	0.9	8
218	Numerical Modeling of Fully Nonlinear 3D Overturning Waves over Arbitrary Bottom., 2001,, 417.		0
219	Waves Due to a Steadily Moving Load on a Floating Ice Plate. Fluid Mechanics and Its Applications, 2001, , 229-236.	0.1	0
220	On the Transition from Twoâ€Dimensional to Threeâ€Dimensional Water Waves. Studies in Applied Mathematics, 2000, 104, 91-127.	1.1	10
221	Critical states and minima for an energy with second–order gradients. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2000, 456, 97-124.	1.0	0
222	On the nonlinear stability of solitary wave solutions of the fifth-order Korteweg–de Vries equation. Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263, 98-104.	0.9	23
223	NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES. Annual Review of Fluid Mechanics, 1999, 31, 301-346.	10.8	264
224	Numerical study of generalized interfacial solitary waves. Physics of Fluids, 1999, 11, 1502-1511.	1.6	31
225	Gravity flows with a free surface of finite extent. European Journal of Mechanics, B/Fluids, 1998, 17, 19-31.	1.2	7
226	The effect of the induced mean flow on solitary waves in deep water. Journal of Fluid Mechanics, 1998, 355, 317-328.	1.4	17
227	On explicit solutions of the free-surface Euler equations in the presence of gravity. Physics of Fluids, 1997, 9, 2828-2834.	1.6	3
228	Numerical computation of capillary–gravity interfacial solitary waves. Journal of Fluid Mechanics, 1997, 349, 221-251.	1.4	54
229	Free-surface flows with two stagnation points. Journal of Fluid Mechanics, 1996, 324, 393-406.	1.4	2
230	The 1:2 resonance withO(2) symmetry and its applications in hydrodynamics. Journal of Nonlinear Science, 1995, 5, 105-129.	1.0	17
231	Stability of capillary–gravity interfacial waves between two bounded fluids. Physics of Fluids, 1995, 7, 3013-3027.	1.6	19
232	Spatial bifurcations of interfacial waves when the phase and group velocities are nearly equal. Journal of Fluid Mechanics, 1995, 295, 121.	1.4	10
233	Bifurcations of capillary-gravity interfacial waves. , 1995, , 67-76.		0
234	Resonant capillary–gravity interfacial waves. Journal of Fluid Mechanics, 1994, 265, 303-343.	1.4	35

#	Article	IF	Citations
235	Capillary–gravity periodic and solitary waves. Physics of Fluids, 1994, 6, 2239-2241.	1.6	10
236	Geometric Aspects of Spatially Periodic Interfacial Waves. Studies in Applied Mathematics, 1994, 93, 93-132.	1.1	13
237	Capillary-gravity solitary waves with damped oscillations. Physica D: Nonlinear Phenomena, 1993, 65, 399-423.	1.3	75
238	Nonlinear bow flows with spray. Journal of Fluid Mechanics, 1993, 255, 91.	1.4	23
239	A steady breaking wave. Physics of Fluids A, Fluid Dynamics, 1993, 5, 277-279.	1.6	9
240	Gravity-capillary solitary waves in water of infinite depth and related free-surface flows. Journal of Fluid Mechanics, 1992, 240, 549.	1.4	129
241	Weir flows and waterfalls. Journal of Fluid Mechanics, 1991, 230, 525-539.	1.4	21
242	Nonlinear freeâ€surface flows past a submerged inclined flat plate. Physics of Fluids A, Fluid Dynamics, 1991, 3, 2995-3000.	1.6	1
243	Ideal jets falling under gravity. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1711-1717.	1.6	11
244	The Thirdâ€Harmonic Resonance for Capillaryâ€Gravity Waves with O(2) Spatial Symmetry. Studies in Applied Mathematics, 1990, 82, 13-35.	1.1	6
245	The effects of wave-induced seepage on an impervious breakwater with an extended foundation base. Coastal Engineering, 1990, 14, 417-437.	1.7	0
246	An analysis of two-dimensional water waves based on O(2) symmetry. Nonlinear Analysis: Theory, Methods & Applications, 1990, 14, 733-764.	0.6	11
247	Flows emerging from a nozzle and falling under gravity. Journal of Fluid Mechanics, 1990, 213, 465.	1.4	33
248	Open channel flows with submerged obstructions. Journal of Fluid Mechanics, 1989, 206, 155-170.	1.4	82
249	Flows over rectangular weirs. Physics of Fluids, 1988, 31, 2071.	1.4	17
250	Discussion of " Waveâ€Induced Pressure Under Gravity Structure â€Iby Philip L.â€F. Liu (January, 1985, Vol.)	Tj ETQq0 () O _o rgBT /Ove
251	Ideal jet flow in two dimensions. Journal of Fluid Mechanics, 1987, 185, 275-288.	1.4	27
252	Twenty-first century wave climate projections for Ireland and surface winds in the North Atlantic Ocean. Advances in Science and Research, 0, 13, 75-80.	1.0	17

FREDERIC DIAS

#	Article	IF	CITATIONS
253	NAO and extreme ocean states in the Northeast Atlantic Ocean. Advances in Science and Research, 0, 14, 23-33.	1.0	13
254	Case study of the winter $2013/2014$ extreme wave events off the west coast of Ireland. Advances in Science and Research, 0, 15, 145-157.	1.0	9
255	Teleconnections and Extreme Ocean States in the Northeast Atlantic Ocean. Advances in Science and Research, 0, 16, 11-29.	1.0	4